凸分析(1)

 最近刚开始读Rockafellar的这本convex analysis,尝试记一些boyd convex optimization里面没有的东西。自己还是太弱了。很多问题还是想不明白。先写一些作为学习笔记好了。希望能找到小伙伴一起学习。
关于仿射集的Tucker表示。
 首先,仿射变换 :RnRm 的图像是 Rm+n 中的一个仿射子集。
 对于 y=x=Ax+a 的图像由点 z=(x,y) 组成,其中 xRn,yRm 。显然,对于 z ,有z=b成立。其中 b=a 并且 B 是线性变换:(x,y)xy
 所以 的图像为 {z|Bz=b} B 为线性变换所对应的 m×n 的矩阵, bRm ,因此,该集合为仿射集。
 特别的,从 Rn Rm 的线性变换: xx (即 a=b=0 )的图像是包含空间 Rm+n 原点的仿射集。
 因此它是 Rm+n 的某个子空间 L L的正交补可写为:

L={(x,y)|xRn,yRm,x=y}

L 的图像。
事实上,对于 y=x 的图像 z=(x,y) 。记 z=(x,y)L
z,z=(x,y),(x,y)=0
x,y+x,y=0
x,x+x,y=x,x+x,y=0
x,x+y=0 对任意 xRn 成立。
x+y=0 x=Ay
 进一步的,有结论:任何非平凡仿射集都可以表示成仿射变换的图像。
 不妨设 M RN中的 n 维仿射集,1<n<N
M={x|Bx=β},xRN
 将 x 写成x=(ξ1,ξ2,,ξN),则
Bx=ββi1ξ1++βiNξN=βi,i=1,,k,k>Nn=m
M n 维仿射集 \quad 其平行子空间 {x|Bx=0} 维数为 n
 即B的零度为 N \quad Bx=0 n 个线性无关的解。
r(B)=Nn=m
方程组 βi1ξ1++βiNξN=βi,i=1,,k 可以通过初等行变换来消去 km 行,化简为 βi1ξ1++βiNξN=βi,i=1,,m
 记为 Bx=β 此时 r(B)=r(B|β)=m
矩阵的行秩等于列秩。
ξ1,,ξN 的秩为 m ,因此可排序为ξ1¯,,ξN¯,其中 ξ1¯,,ξn¯ 看作已知量,选出 ξn+1¯,,ξN¯ 为线性无关的自变量。
 那么我们可以用 ξ1¯,,ξn¯ 来表示出其余 m ξn+1¯,,ξN¯
 即 ξn+i¯=αi1ξ1¯++αinξn¯+αi,i=1,,m
 实际上,我们可以考虑非齐次线性方程组 Bx=β 由于 r(B)=r(B|β)=m ,则存在 nm 个自由未知量,并且其余 m 个约束变量可以由自由未知量表出。
 方程组Bx=β称为仿射集 M 的Tucker表示,它将M表示成从 Rn Rm 的仿射变换的图像。
 显然,对于 N 个列向量,当其中任意m个都线性无关时,仿射集有最多种的Tucker表示,即任意种排列都满足条件,因此共有 N! 种Tucker表示。
 当然,子空间 L 的Tucker表示是齐次形式的:
ξn+1¯=αi1ξ1¯++αinξn¯,i=1,,m

 以上 L 的这种表示是作为线性变换的图像,那么L对应负伴随变换的图像,因此,当且仅当
ξj¯=ξn+1¯α1j++ξn+m¯,j=1,,m

成立时, x=(ξ1,,ξN) 属于 L 。这就给出了 L 的Tucker表示。(书上这个地方好像写错了)
 另外,我们可以用线性算子证明矩阵的行秩等于列秩。
 我们考虑线性映射 :RnRm 以及它的伴随 :RmRn
 又 Im={w|w=x,xRn}={A线}
 不妨设矩阵列向量为 α1,,αn
Im={k1α1++knαn|ki}
{k1α1++knαn} {α1,,αn} 可以互相线性表出。
rank({k1α1++knαn})=rank({α1,,αn})
 即 dim(Im)= 矩阵A的列秩。
 对 wRm wker(w)=0vRn,<A(w),v>=0
vRn,w,A(v)=0w(Im)
ker=(Im)dim(ker)=dim(Im)=mdim(Im)
 又由秩零定理,有 dim(ker)=mdim(Im)
dim(Im)=dim(Im) ,由于实范围内 A 即为 AT
A 列秩= AT 列秩 矩阵A行秩=列秩。

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值