矩阵零空间

矩阵零空间

Reference:
给定一个矩阵A,让我求它的零空间,应该怎么求?

对于一个矩阵 A A A,它的零空间就是所有满足 A x = 0 A \mathbf{x}=0 Ax=0 的向量 x \mathbf{x} x 张成的空间。
我们举个例子说明一下该如何求零空间,假设矩阵:
A = [ 1 1 1 1 1 2 3 4 1 4 7 10 ] A=\left[\begin{array}{cccc} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 4 & 7 & 10 \end{array}\right] A= 1111241371410 我们先求出它的简化行阶梯型矩阵:
A = [ 1 1 1 1 1 2 3 4 1 4 7 10 ] = [ 1 1 1 1 0 1 2 3 0 3 6 9 ] = [ 1 0 − 1 − 2 0 1 2 3 0 0 0 0 ] A=\left[\begin{array}{cccc} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 4 & 7 & 10 \end{array}\right]=\left[\begin{array}{cccc} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \\ 0 & 3 & 6 & 9 \end{array}\right]=\left[\begin{array}{cccc} 1 & 0 & -1 & -2 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 \end{array}\right] A= 1111241371410 = 100113126139 = 100010120230 写成 A x = 0 A \mathbf{x}=0 Ax=0 的形式,我们可以把主元表示出来:
x 1 = x 3 + 2 x 4 x 2 = − 2 x 3 − 3 x 4 \begin{array}{l} x_1=x_3+2 x_4 \\ x_2=-2 x_3-3 x_4 \end{array} x1=x3+2x4x2=2x33x4于是通解 [ x 1 x 2 x 3 x 4 ] \left[\begin{array}{c}x_1 \\ x_2 \\ x_3 \\ x_4\end{array}\right] x1x2x3x4 可以表示为:
[ x 3 + 2 x 4 − 2 x 3 − 3 x 4 x 3 x 4 ] = x 3 [ 1 − 2 1 0 ] + x 4 [ 2 − 3 0 1 ] \left[\begin{array}{c} x_3+2 x_4 \\ -2 x_3-3 x_4 \\ x_3 \\ x_4 \end{array}\right]=x_3\left[\begin{array}{c} 1 \\ -2 \\ 1 \\ 0 \end{array}\right]+x_4\left[\begin{array}{c} 2 \\ -3 \\ 0 \\ 1 \end{array}\right] x3+2x42x33x4x3x4 =x3 1210 +x4 2301 这表明所有满足矩阵方程的向量 x \mathbf{x} x 都是上式右边两个向量的线性组合,所以该矩阵的零空间就是:
{ [ 1 − 2 1 0 ] , [ 2 − 3 0 1 ] } \left\{\left[\begin{array}{c} 1 \\ -2 \\ 1 \\ 0 \end{array}\right],\left[\begin{array}{c} 2 \\ -3 \\ 0 \\ 1 \end{array}\right]\right\} 1210 , 2301

什么时候无零空间

当说“无零空间”时,通常是指线性方程组 A x = 0 Ax = 0 Ax=0 没有非零解,这实际上意味着零空间只包含零向量( x 1 = 0 , x 2 = 0 , ⋯ x_1=0, x_2=0,\cdots x1=0,x2=0,)。这通常发生在以下情况:

  1. 矩阵A是满秩的:如果矩阵A是一个 m×n 矩阵,并且它的 秩(rank) 等于它的列数n,那么A的列向量是线性无关的。在这种情况下,线性方程组 A x = 0 Ax = 0 Ax=0 只有零解,因为列向量的线性组合(即A的行向量与x的点积)只有在x为零向量时才能为零。这意味着零空间只包含零向量。(比如 J x = 0 Jx=0 Jx=0 时,如果 J J J 满秩,那么可以推出 x = 0 x=0 x=0,而当 x ≠ 0 x\neq 0 x=0 时, J x ≠ 0 Jx\neq 0 Jx=0)
  2. 线性映射是单射的:如果线性映射或矩阵A是单射的,即对于每一个输入向量x,都存在唯一的输出向量Ax。在这种情况下,零空间也只包含零向量,因为没有其他向量x可以映射到零向量(除非x本身就是零向量)。
  3. 矩阵A的列数大于行数:如果矩阵A是一个“瘦”矩阵(即列数大于行数),并且它的列向量是线性无关的,那么方程组Ax = 0 将没有非零解。这是因为列向量的数量超过了方程的数量,因此不可能存在非零解使得方程组的所有方程都成立。
  4. 方程组的约束是矛盾的:如果方程组中的方程是相互矛盾的,即它们没有公共解,那么方程组就没有解。然而,这通常指的是一般的线性方程组,而不是特指零空间。

总之,当矩阵A是满秩的、线性映射是单射的、或者矩阵A的列数大于行数并且列向量线性无关时,零空间只包含零向量,即没有非零解。这并不意味着零空间“不存在”,而是说它只包含零元素。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值