- 博客(12)
- 收藏
- 关注
原创 组会总结23-3-28
提供了一种基于稀疏性启发的极端大内核应用方法,这种方法可以平滑地将内核大小扩展到超过51×51,并且在性能上优于Swin Transformer和ConvNeXt等先进模型。探索了使用极端大内核进行训练的卷积神经网络模型,这是一个新的思路和方法,为计算机视觉领域提供了新的研究方向。跟卷积与transformer并行类似,这种大核的卷积跟局部注意力很像,另一个是解决了 RGB 图与深度图的对齐问题。一个是layer attention的改进。
2023-04-02 22:17:11 214
原创 第七周作业
目录1,BAM: Bottleneck Attention ModuleBAM2 ,Dual Attention Network for Scene Segmentation3,ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks4,Improving Convolutional Networks with Self-Calibrated Convolutions1,BAM: Bottleneck Atten
2021-10-25 09:41:20 295
转载 c++中vector容器
目录c++中vector容器一,什么是vector?二、容器特性三、基本函数实现1,构造函数2.增加函数3.删除函数4.遍历函数5.判断函数6.大小函数7.其他函数8,集合四,简单介绍c++中vector容器一,什么是vector?向量(Vector)是一个封装了动态大小数组的顺序容器(Sequence Container)。跟任意其它类型容器一样,它能够存放各种类型的对象。可以简单的认为,向量是一个能够存放任意类型的动态数组。二、容器特性1.顺序序列顺序容器中的元素按照严格的线性顺序排序。可以
2021-10-08 12:31:38 179
原创 动态规划 - 买卖股票的最佳时机2
动态规划 - 买卖股票的最佳时机2代码解析、动态规划class Solution {public: int maxProfit(vector<int>& prices) { int length = prices.size(); int dp[length][2]; dp[0][1] = -prices[0]; dp[0][0] = 0; for (int i = 1;i
2021-10-07 14:45:05 76
原创 leetcode Two sum
leetcode Two sum代码分析知识点数组长度sizeof()nums.size() or size(a)for循环代码分析class Solution {public: int removeDuplicates(vector<int>& nums) { if (nums.size() == 0) return 0; ##判断数组是否为空 int j = 1; for (int i = 1; i < nums.size(); i++)
2021-10-07 13:56:51 74
原创 第五周作业:卷积神经网络(Part3)
目录Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising本文贡献网络架构损失函数mobilenet网络结构宽度因子和分辨率因子代码Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising本文贡献提出了一种端到端CNN网络用于高斯去噪网络,称为DnCNN。该网络采用残差学习策略从噪声图片中去除潜在干净图像,
2021-10-04 10:02:09 962 1
原创 第四周作业:卷积神经网络(Part2)
目录李沐课程GoogleNetResNetAI研习社“猫狗大战”自己的cnn网络vgg迁移学习resnet迁移学习李沐课程GoogleNetResNetAI研习社“猫狗大战”自己的cnn网络vgg迁移学习resnet迁移学习在vgg迁移学习的基础上迁移了resnet网络,效果却并不理想,准确率只有50%左右。下一步准备扩大训练集试试效果...
2021-09-26 20:45:42 134 1
原创 第三周作业:卷积神经网络
目录卷积神经网络1.输入层2、卷积层(Convolution Layer)3、池化层(Pooling Layer)4、全连接层5、Softmax层AI研习社—猫狗大战结果展示卷积神经网络卷据神经网络由五部分组成1.输入层在处理图像的CNN中,输入层一般代表了一张图片的像素矩阵。可以用三维矩阵代表一张图片。三维矩阵的长和宽代表了图像的大小,而三维矩阵的深度代表了图像的色彩通道。比如黑白图片的深度为1,而在RGB色彩模式下,图像的深度为3。2、卷积层(Convolution Layer)卷积层是CN
2021-09-19 21:38:39 495 1
原创 第二周作业:多层感知机
权重衰退2 SOFTMAX回归2.1回归 vs 分类 :2.2 损失函数2.2.1 L2 loss (均方损失)2.2.1 L1 loss (绝对值损失函数)2.2.1 Huber’ Robust Loss (结合了L1 和 L2 的优点)3 多层感知机3.1 感知机3.1.1感知机定义3.1.2训练感知机3.1.3 收敛定理3.1.4 感知机的问题,XOR问题3.2 多层感知机3.2.14 权重衰退4.1 L2正则化4.1.1使用均方范数作为硬性限制4.1.2使用均方范数作为柔性限制4.1.3总结4.2丢
2021-09-12 21:23:31 330
原创 softmax的从零开始实现
目录softmax从零实现1 数据预处理1.1 torch.normal()2 softmax操作2.1 实现softmax操作2.2 实现softmax回归模型3 实现交叉熵损失3.1 实现交叉熵损失函数4 评估模型4.1 将预测类别与真实y元素进行比较4.2 我们可以评估在任意模型 net4.3 Accumulator 实例中创建了2个变量5 softmax回归的训练6定义一个在动画中绘制数据的实用程序类7 训练函数7.1 小批量随机梯度下降来优化模型的损失函数7.2 模型训练10个迭代周期softm
2021-09-12 10:44:32 668
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人