【3DV】Robust RGB-D Fusion for Saliency Detection

一个是layer attention的改进
另一个是解决了 RGB 图与深度图的对齐问题
【ICLR2023】More ConvNets in the 2020s: Scaling up Kernels Beyond 51 × 51 using Sparsity

探索了使用极端大内核进行训练的卷积神经网络模型,这是一个新的思路和方法,为计算机视觉领域提供了新的研究方向。
提供了一种基于稀疏性启发的极端大内核应用方法,这种方法可以平滑地将内核大小扩展到超过51×51,并且在性能上优于Swin Transformer和ConvNeXt等先进模型。
跟卷积与transformer并行类似,这种大核的卷积跟局部注意力很像,
【TMM2023】Bridging Component Learning with Degradation Modelling for Blind Image Super-Resolution

- 提出了一种组件分解与协同优化网络co-optimization network(CDCN),,也就是增加了结构图和细节图两个输出,进行超分的学习
【TGRS2023】Language-Aware Domain Generalization Network for Cross-Scene Hyperspectral Image Classification

- 核心点是给每个类别增加了文本描述,进行对比学习,以达到更好的效果
【ARXIV2301】Rethinking Mobile Block for Efficient Neural Models

- 条纹窗口机制,它可以更有效地建模长期依赖关系,计算复杂度较低。条纹机制也太常见了,还可以增加组间的条纹
【ARXIV2301】Image Super-Resolution using Efficient Striped Window Transformer

2万+

被折叠的 条评论
为什么被折叠?



