《造型的诞生》杉浦康平

在学堂在线看了一门课程《视觉传递与设计思维》,对设计没有任何概念的我通过这个课程窥见了设计领域的一隅。听老师讲解了设计的内涵,创作的方法,传达的信息。才发现生活中的设计原来蕴含了如此丰富的信息,透过设计可以看见一个时期的文化,人们的生活状态等等。老师倡导格律设计思维,即从古代的文字设计,建筑设计,乐器设计中提取其中的设计思维,也就是格出其设计中最基本的元素,然后运用到现在的设计之中。比如中国古代的五声音阶体系,宫商角徵羽(相当于现在的do.re.mi.sol.la),这个五个音阶可通过三分损益法得到(以某一标准音的管长为一个音阶,减去这个长度的三分之一,变成2/3,然后再增加三分之一,变成2/3+2/9=8/9,依次得到16/27….)。从这里的设计思想提取出的数学原理,应用到颜色的配比,依这个数字序列得到不同灰度构成的色谱。这个色谱就具有某种美感。再如古代的鲁班尺在不同长度上代表着吉或凶,古代建筑的尺寸就以鲁班尺的长度为依据。从鲁班尺上吉凶的长度变化便可提出古人的设计思维,加以运用。认真研究古代的设计,古代的文化,它是创新的源头活水,思想的宝库。

课程中的参考书目有《造型的诞生》,于是去图书馆借来看。作者杉浦康平,平面设计大师,以其独特的方法论将意识领域世界形象化。作者的视野广阔,深入研究过中国文化,佛教,对设计与宇宙的思考之深,娓娓道来其中的联系。贯穿整书的思想是宇宙万物对立统一,相互照应。说的很有道理。穷究生活中各种造型的由来,为什么如此设计而不是那样,其中必然有某种道理。我比较信奉的是物质影响观念,人类所生存的自然环境塑造着人类的思想观念,人类对自然的认知影响着人类的活动。比如人的审美意识,虽然审美存在个体差异,但有些美是多数人公认的,比如美女是吧,再比如对称美,黄金比例。这些审美意识必然是由人类对周围事物观察所形成的,也许是人体结构,动物的形态都是对称的才形成了对称美。

总而言之。中国汉字的设计,古代一些象征生命力的藤曼图案设计,作者的研究的思路就是追溯到生命的起源,或人体结构,找出这些设计的由来。

数据集介绍:多类别动物目标检测数据集 一、基础信息 数据集名称:多类别动物目标检测数据集 图片数量: - 训练集:6,860张图片 - 验证集:1,960张图片 - 测试集:980张图片 总计:9,800张含动态场景的动物图像 分类类别: Alpaca(羊驼)、Camel(骆驼)、Fox(狐狸)、Lion(狮子)、Mouse(鼠类)、Ostrich(鸵鸟)、Pig(猪)、Rabbit(兔子)、Rhinoceros(犀牛)、Shark(鲨鱼)、Sheep(绵羊)、Snake(蛇)、Whale(鲸鱼) 标注格式: YOLO格式标注,包含目标检测所需的归一化坐标及类别索引,适用于YOLOv5/v7/v8等系列模型训练。 数据特性: 覆盖航拍、地面视角等多种拍摄角度,包含动态行为捕捉及群体/单体目标场景。 二、适用场景 野生动物监测系统: 支持构建无人机/红外相机AI识别系统,用于自然保护区动物种群追踪与生态研究。 智慧农业管理: 适用于畜牧养殖场动物行为分析、数量统计及健康监测等自动化管理场景。 生物多样性研究: 为陆地/海洋生物分布研究提供标注数据支撑,助力濒危物种保护项目。 教育科研应用: 可作为计算机视觉课程实践素材,支持目标检测、迁移学习等AI教学实验。 三、数据集优势 跨物种覆盖全面: 包含13类陆生/水生动物,涵盖家畜、野生动物及濒危物种,支持复杂场景下的模型泛化训练。 动态场景丰富: 捕捉动物运动、群体互动等真实行为模式,提升模型对非静态目标的检测鲁棒性。 标注体系规范: 严格遵循YOLO标注标准,提供精确的边界框定位,支持即插即用的模型训练流程。 多场景适配性: 数据来源涵盖航拍影像、地面监控等多维度视角,适用于农业、生态保护、科研等跨领域应用。 类别平衡优化: 通过分层抽样保证各类别数据分布合理性,避免长尾效应影响模型性能。
数据集介绍:陆生动物多场景目标检测数据集 一、基础信息 数据集名称:陆生动物多场景目标检测数据集 数据规模: - 训练集:9,134张图片 - 验证集:1,529张图片 - 测试集:1,519张图片 分类类别: - 家畜类:Cattle(牛)、Horse(马)、Sheep(羊) - 宠物类:Cat(猫)、Dog(狗) - 野生动物类:Bear(熊)、Deer(鹿)、Elephant(大象)、Monkey(猴子) - 禽类:Chicken(鸡) 标注格式: YOLO格式标注,包含目标边界框坐标和10类动物标签,支持多目标检测场景 数据特性: 涵盖俯拍视角、户外自然场景、牧场环境等多角度拍摄数据 二、适用场景 农业智能化管理: 支持开发牲畜数量统计、行为分析系统,适用于现代化牧场管理 野生动物保护监测: 可用于构建自然保护区动物识别系统,支持生物多样性研究 智能安防系统: 训练农场入侵检测模型,识别熊等危险野生动物 宠物智能硬件: 为宠物智能项圈等设备提供多动物识别训练数据 教育科研应用: 适用于动物行为学研究和计算机视觉教学实验 三、数据集优势 物种覆盖全面: 包含10类高价值陆生动物,覆盖畜牧、宠物、野生动物三大场景需求 标注质量优异: YOLO格式标注严格遵循标准规范,支持YOLOv5/v7/v8等主流检测框架直接训练 场景多样性突出: 包含航拍视角、近距离特写、群体活动等多种拍摄角度和场景 大规模训练保障: 超12,000张标注图片满足深度神经网络训练需求 现实应用适配性: 特别包含动物遮挡、群体聚集等现实场景样本,提升模型部署效果
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值