兩獨立高斯隨機變數之和
X + Y ∼ N ( μ X + μ Y , σ X 2 + σ Y 2 ) X+Y \sim \mathcal{N}(\mu_X +\mu_Y, \sigma_X^2 + \sigma_Y^2) X+Y∼N(μX+μY,σX2+σY2)
以下證明參考Sum of normally distributed random variables - Proof using characteristic functions。
兩個隨機變數
X
,
Y
X,Y
X,Y的特徵函數定義如下:
φ
X
(
t
)
=
E
(
e
i
t
X
)
,
φ
Y
(
t
)
=
E
(
e
i
t
Y
)
\varphi_X (t) = \operatorname{E}\left(e^{itX}\right), \qquad \varphi_Y(t) = \operatorname{E}\left(e^{itY}\right)
φX(t)=E(eitX),φY(t)=E(eitY)
假設 X X X和 Y Y Y皆為高斯隨機變數,且互相獨立:
φ X + Y ( t ) = φ X ( t ) φ Y ( t ) X,Y互相獨立 = exp ( i t μ X − σ X 2 t 2 2 ) exp ( i t μ Y − σ Y 2 t 2 2 ) 高斯隨機變數的特徵函數: φ ( t ) = exp ( i t μ − σ 2 t 2 2 ) = exp ( i t ( μ X + μ Y ) − ( σ X 2 + σ Y 2 ) t 2 2 ) . \begin{aligned} \varphi_{X+Y}(t)&=\varphi_X(t) \varphi_Y(t) && \text{X,Y互相獨立}\\& =\exp\left(it\mu_X - {\sigma_X^2 t^2 \over 2}\right) \exp\left(it\mu_Y - {\sigma_Y^2 t^2 \over 2}\right) && \text{高斯隨機變數的特徵函數:}\varphi(t) = \exp\left(it\mu - {\sigma^2 t^2 \over 2}\right)\\[6pt] & = \exp \left( it (\mu_X +\mu_Y) - {(\sigma_X^2 + \sigma_Y^2) t^2 \over 2}\right). \end{aligned} φX+Y(t)=φX(t)φY(t)=exp(itμX−2σX2t2)exp(itμY−2σY2t2)=exp(it(μX+μY)−2(σX2+σY2)t2).X,Y互相獨立高斯隨機變數的特徵函數:φ(t)=exp(itμ−2σ2t2)
得到一個平均值為 μ X + μ Y \mu_X +\mu_Y μX+μY,變異數為 σ X 2 + σ Y 2 \sigma_X^2 + \sigma_Y^2 σX2+σY2的高斯隨機變數的特徵函數。
其中第一個等號參考兩獨立隨機變數之和的特徵函數。
參考Characteristic function (probability theory):
There is a bijection between probability distributions and characteristic functions. That is, for any two random variables X1, X2, both have the same probability distribution if and only if φ X 1 = φ X 2 \varphi_{X_{1}}=\varphi_{X_{2}} φX1=φX2
也就是說如果隨機變數不同,那麼它們的特徵函數一定也不同。因此可以確定高斯隨機變數 X + Y X+Y X+Y一定是以下的常態分布:
X + Y ∼ N ( μ X + μ Y , σ X 2 + σ Y 2 ) X+Y \sim \mathcal{N}(\mu_X +\mu_Y, \sigma_X^2 + \sigma_Y^2) X+Y∼N(μX+μY,σX2+σY2)
其它參考連結:
Gaussian random vector
The Multivariate Gaussian Distribution