Time Limit:10000MS Memory Limit:65536K
Total Submit:43 Accepted:11
Case Time Limit:1000MS
Description
经过几个月辛勤的工作,
F
J
FJ
FJ决定让奶牛放假。假期可以在
1
…
N
1…N
1…N天内任意选择一段(需要连续),每一天都有一个享受指数
W
W
W。但是奶牛的要求非常苛刻,假期不能短于
P
P
P天,否则奶牛不能得到足够的休息;假期也不能超过
Q
Q
Q天,否则奶牛会玩的腻烦。
F
J
FJ
FJ想知道奶牛们能获得的最大享受指数。
Input
第一行:N,P,Q.
第二行:N个数字,中间用一个空格隔开,每个数都在longint范围内。
Output
一个整数,奶牛们能获得的最大享受指数。
Sample Input
5 2 4
-9 -4 -3 8 -6
Sample Output
5
Hint
50
50
50% $1≤N≤10000 $
100
100
100%
1
≤
N
≤
100000
1≤N≤100000
1≤N≤100000
1
<
=
p
<
=
q
<
=
n
1<=p<=q<=n
1<=p<=q<=n
选择第
3
−
4
3-4
3−4天,享受指数为
−
3
+
8
=
5
-3+8=5
−3+8=5。
解题思路
看到区间的问题首先肯定是想到求前缀和,我们把
[
1
,
k
]
[1,k]
[1,k]的和记为
s
u
m
[
k
]
sum[k]
sum[k],可以得到
s
u
m
[
i
]
=
s
u
m
[
i
−
1
]
+
a
[
i
]
sum[i] = sum[i - 1] + a[i]
sum[i]=sum[i−1]+a[i],
[
l
,
r
]
[l,r]
[l,r]的和即为
s
u
m
[
r
]
−
s
u
m
[
l
−
1
]
sum[r] - sum[l - 1]
sum[r]−sum[l−1](这里视
s
u
m
[
0
]
=
0
sum[0] = 0
sum[0]=0)。我们假设选择的区间为
[
l
,
r
]
[l,r]
[l,r]且
r
r
r固定,可知
r
−
q
+
1
≤
l
≤
r
−
p
+
1
r-q+1≤l≤r-p+1
r−q+1≤l≤r−p+1,若要使
[
l
,
r
]
[l,r]
[l,r]区间的值最大,则
s
u
m
[
l
−
1
]
sum[l - 1]
sum[l−1]需最小,才可使得
s
u
m
[
r
]
−
s
u
m
[
l
−
1
]
sum[r] - sum[l - 1]
sum[r]−sum[l−1]最大。
代码
#include<algorithm>
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
long long n,m,qq[100010],p,q,h,t,a;
long long s[100010],ans=-2147483600;
int main(){
scanf("%lld%lld%lld",&n,&p,&q);
for(int i=1;i<=n;i++)
{
scanf("%lld",&a);
s[i]+=s[i-1]+a;//记前缀和
}
h=1,t=0;
for(long long r=p;r<=n;r++)
{
while(h<=t&&s[qq[t]-1]>=s[r-p])t--;//更优的sum[l - 1]予以插队
qq[++t]=r-p+1;//入队
while(h<=t&&qq[h]<r-q+1) h++;//不处于维护范围内的出队
ans=max(ans,s[r]-s[qq[h]-1]);//更新答案
}
printf("%lld",ans);
}