【SSL】2284 &【JZOI】1772假期(单调队列)
Time Limit:1000MS
Memory Limit:65536K
Description
经过几个月辛勤的工作,FJ决定让奶牛放假。假期可以在1…N天内任意选择一段(需要连续),每一天都有一个享受指数W。但是奶牛的要求非常苛刻,假期不能短于P天,否则奶牛不能得到足够的休息;假期也不能超过Q天,否则奶牛会玩的腻烦。FJ想知道奶牛们能获得的最大享受指数。
Input
第一行:N,P,Q.
第二行:N个数字,中间用一个空格隔开,每个数都在longint范围内。
Output
一个整数,奶牛们能获得的最大享受指数。
Sample Input
5 2 4
-9 -4 -3 8 -6
Sample Output
5
Hint
50% 1≤N≤10000
100% 1≤N≤100000
1<=p<=q<=n
选择第3-4天,享受指数为-3+8=5。
思路
看到区间的问题首先肯定是想到求前缀和,我们把[1,k]的和记为sum[k],可以得到sum[i] = sum[i - 1] + a[i],[l,r]的和即为sum[r] - sum[l - 1](这里视sum[0] = 0)。我们假设选择的区间为[l,r]且r固定,可知r−q+1≤l≤r−p+1,若要使[l,r]区间的值最大,则sum[l - 1]需最小,才可使得sum[r] - sum[l - 1]最小,当i右移一位到i+1,因为p,q为给定不变的值,对应寻找最小sum[l-1]的区间也右移一位。
代码
#include<iostream>
#include<cstdio>
#include<deque>
using namespace std;
long long sum[100010];
deque<long long>que;
int main()
{
long long i,n,p,q,ans=-2147483647;
scanf("%lld%lld%lld",&n,&p,&q);
for(sum[0]=0,i=1;i<=n;i++)
scanf("%lld",&sum[i]),sum[i]+=sum[i-1];
for(i=p;i<=n;i++)
{
for(;!que.empty()&&sum[i-p]<=sum[que.back()];que.pop_back());//删除大于x的数
que.push_back(i-p);
for(;!que.empty()&&que.front()<i-q;que.pop_front());//删除不在范围内的数
ans=max(ans,sum[i]-sum[que.front()]);
}
printf("%lld",ans);
return 0;
}