题目描述
房间里放着 n 块奶酪。一只小老鼠要把它们都吃掉,问至少要跑多少距离?老鼠一开始在
(
0
,
0
)
(0,0)
(0,0) 点处。
输入格式
第一行有一个整数,表示奶酪的数量
n
n
n。
第
2
2
2 到第
(
n
+
1
)
(n + 1)
(n+1)行,每行两个实数,第
(
i
+
1
)
(i + 1)
(i+1) 行的实数分别表示第
i
i
i块奶酪的横纵坐标
x
i
,
y
i
x_i, y_i
xi,yi
输出格式
输出一行一个实数,表示要跑的最少距离,保留
2
2
2 位小数。
输入输出样例
输入 #1
4
1 1
1 -1
-1 1
-1 -1
输出 #1
7.41
解题思路
状压DP走起:
设
f
[
j
]
[
i
]
f[j][i]
f[j][i]表示从j点出发遍历集合为i的点的路程最小值(j也包括在i里),枚举i里的其他点进行转移。
边界为
f
[
j
]
[
i
]
=
0
f[j][i]=0
f[j][i]=0(
i
i
i中只有j)。
注意最后答案要加上到
(
0
,
0
)
(0,0)
(0,0)的距离。
时间复杂度 O ( n ∗ 2 n ) O(n*2^n) O(n∗2n)
代码
#include<algorithm>
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
using namespace std;
int n;
double x[20],y[20],ans,f[20][1<<15];
double dis(int a,int b){
return sqrt((x[a]-x[b])*(x[a]-x[b])+(y[a]-y[b])*(y[a]-y[b]));
}
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++)
cin>>x[i]>>y[i];
memset(f,127,sizeof(f));
for(int i=0;i<(1<<n);i++)
for(int j=1;j<=n;j++)
{
if(!(i&(1<<(j-1)))) continue;
if(i==(1<<(j-1)))
{
f[j][i]=0;
continue;
}
for(int s=1;s<=n;s++)
{
if((i&(1<<(s-1))==0)||(j==s))continue;
f[j][i]=min(f[j][i],f[s][i-(1<<(j-1))]+dis(j,s));
}
}
double ans=f[1][(1<<n)-1]+dis(1,0);
for(int i=2;i<=n;i++)
ans=min(ans,f[i][(1<<n)-1]+dis(i,0));
printf("%.2lf",ans);
}