Description
数列 f [ n ] = f [ n − 1 ] + f [ n − 2 ] , f [ 1 ] = f [ 2 ] = 1 f[n]=f[n-1]+f[n-2],f[1]=f[2]=1 f[n]=f[n−1]+f[n−2],f[1]=f[2]=1的前 n n n项的和 s [ n ] s[n] s[n]
Input
N(1<N<231)
Output
第n项结果
Sample Input
12345
Sample Output
8995
Source
elba
解题思路
法一:虽然我们有 S [ n ] = F [ n + 2 ] − 1 S[n]=F[n+2]-1 S[n]=F[n+2]−1,但本文不考虑此方法,我们想要得到更一般的方法。
法二:仿照之前的思路,考虑
1
×
3
1×3
1×3的矩阵
【
f
[
n
−
2
]
,
f
[
n
−
1
]
,
s
[
n
−
2
]
】
【f[n-2],f[n-1],s[n-2]】
【f[n−2],f[n−1],s[n−2]】,我们希望通过乘以一个
3
×
3
3×3
3×3的矩阵A,得到
1
×
3
1×3
1×3的矩阵:
【
f
[
n
−
1
]
,
f
[
n
]
,
s
[
n
−
1
]
】
=
【
f
[
n
−
1
]
,
f
[
n
−
1
]
+
f
[
n
−
2
]
,
s
[
n
−
2
]
+
f
[
n
−
1
]
】
【f[n-1],f[n],s[n-1]】=【f[n-1],f[n-1]+f[n-2],s[n-2]+f[n-1]】
【f[n−1],f[n],s[n−1]】=【f[n−1],f[n−1]+f[n−2],s[n−2]+f[n−1]】
容易得到这个
3
×
3
3×3
3×3的矩阵是:
然后…………容易发现,这种方法的矩阵规模是
(
r
+
1
)
∗
(
r
+
1
)
(r+1)*(r+1)
(r+1)∗(r+1),比之前流行的方法(法一)好得多。
代码
#include<algorithm>
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
const int INF=9973;
long long n;
using namespace std;
struct c{
int n,m;
int a[10][10];
}A,B,CC;
c operator *(c A,c B){
c C;
C.n=A.n,C.m=B.m;
for(int i=1;i<=C.n;i++)
for(int j=1;j<=C.m;j++)
C.a[i][j]=0;
for(int k=1;k<=A.m;k++)
{
for(int i=1;i<=C.n;i++)
for(int j=1;j<=C.m;j++)
C.a[i][j]=(C.a[i][j]+(A.a[i][k]*B.a[k][j])%INF)%INF;
}
return C;
}
void poww(long long x){
if(x==1)
{
B=A;
return;
}
poww(x>>1);
B=B*B;
if(x&1)
B=B*A;
}
int main(){
scanf("%lld",&n);
if(n==1){
printf("1");
return 0;
}
A.n=3,A.m=3;
A.a[1][1]=0,A.a[1][2]=1,A.a[1][3]=0;
A.a[2][1]=1,A.a[2][2]=1,A.a[2][3]=1;
A.a[3][1]=0,A.a[3][2]=0,A.a[3][3]=1;
poww(n-1);
CC.n=1,CC.m=3;
CC.a[1][1]=1,CC.a[1][2]=1,CC.a[1][3]=1;
CC=CC*B;
printf("%d %d\n",CC.a[1][1],CC.a[1][3]);
}