解题思路
贪心策略:
- 将牛按开始吃草的时间排序。
- 维护每个蓄栏安排进去的最后一头牛,依次考虑每一头牛,找到满足“当前的牛开始吃草的时间不早于蓄栏中最后一头牛结束吃草的时间”的任意一个栅栏,将其安排进去,若没有这样的栅栏则为其新建一个蓄栏。
这样做的时间复杂度是 O ( n 2 ) O(n^2) O(n2)的,注意到我们在找可用蓄栏时,结束吃草的时间越小的牛,越有可能满足条件,故我们可以只关心蓄栏中结束吃草时间最小的牛,用小根堆来维护每个蓄栏安排的最后一头牛的结束吃草的时间,时间复杂度 O ( n l o g n ) O(n log n) O(nlogn)。
代码
#include<algorithm>
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<queue>
using namespace std;
int n,ans[50010];
struct c{
int x,y,id;
bool operator<(const c a)const
{
return x<a.x;
}
}a[50010];
struct Node{
int r,id;
bool operator<(const Node a)const
{
return a.r<r;
}
};
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d%d",&a[i].x,&a[i].y);
a[i].id=i;
}
sort(a+1,a+n+1);
priority_queue<Node>q;
for(int i=1;i<=n;i++)
{
if(!q.size()||q.top().r>=a[i].x)
{
ans[a[i].id]=q.size()+1;
q.push((Node){a[i].y,q.size()+1});
}
else
{
ans[a[i].id]=q.top().id;
q.pop();
q.push((Node){a[i].y,ans[a[i].id]});
}
}
printf("%d\n",q.size());
for(int i=1;i<=n;i++)
printf("%d\n",ans[i]);
}