面试题34:丑数

1.我们把只包含因为2,3,5的数称为丑数,求从小到大的顺序的第1500个丑数,例如6,8都是丑数,但14不是,因为含有因子7.
分析:
常规的做法:逐个判断每个数是不是丑数,统计个数,找到第1500个丑数,方法比较慢。
快速解法:根据丑数的定义,丑数应该是另一个丑数乘以2,3或者5的结果,因此可以构建这样一个数组,里面是排序好的丑数,每一个丑数都是前面的丑数乘以2,3或者5得到的。假设数组中已经有了若干个丑数了,最大的丑数是M,下面一个丑数的产生就是前面的数乘以2,3,或者5的结果。假若不做判断的话,就是将所有的数分别乘以2,3,5,然后找出其中最小的那个数,但是会发现相乘的结果中很多已经出现在前面的数中了,所以也不能完全的所有的数都乘以2,3,5,而是有选择的乘,这就涉及到什么时候,什么位置的数乘以2,什么位置的数乘以3,什么位置的数乘以5 了,然后取这3个数中的最小值作为下一个丑数。

源码:


/**
		* 功能说明:Description
		* 作者:K0713
		* 日期:2016-9-1
		**/
#include<iostream>
using namespace std;
//循环相除判断是否是丑数
bool IsUgly(int number)
{
	while (number % 2 == 0)
		number /= 2;
	while (number % 3 == 0)
		number /= 3;
	while (number % 5 == 0)
		number /= 5;
	return (number == 1) ? true : false;
}
//从1开始找到第1500个丑数
int GetUglyNumber_Solution1(int index)
{
	if (index <= 0)
		return 0;
	int number = 0;
	int uglyFound = 0;
	while (uglyFound < index)
	{
		++number;
		if (IsUgly(number))
		{
			++uglyFound;
		}
	}
	return number;
}
//通过丑数找下一个丑数
int Min(int number1, int number2, int number3);
int GetUglyNumber_Solution2(int index)
{
	if (index <= 0)
		return 0;
	int *pUglyNumbers = new int[index];
	pUglyNumbers[0] = 1;
	int nextUglyIndex = 1;
	int *pMultiply2 = pUglyNumbers;
	int *pMultiply3 = pUglyNumbers;
	int *pMultiply5 = pUglyNumbers;
	while (nextUglyIndex < index)
	{
		int min = Min(*pMultiply2 * 2, *pMultiply3 * 3, *pMultiply5 * 5);
		pUglyNumbers[nextUglyIndex] = min;
		//标定位置
		while (*pMultiply2 * 2 <= pUglyNumbers[nextUglyIndex])
			++pMultiply2;
		while (*pMultiply3 * 3 <= pUglyNumbers[nextUglyIndex])
			++pMultiply3;
		while (*pMultiply5 * 5 <= pUglyNumbers[nextUglyIndex])
			++pMultiply5;
		++nextUglyIndex;
	}
	int ugly = pUglyNumbers[nextUglyIndex - 1];
	delete[] pUglyNumbers;
	return ugly;
}
int Min(int number1, int number2, int number3)
{
	int min = (number1 < number2) ? number1 : number2;
	min = (min < number3) ? min : number3;
	return min;
}
int main()
{
	int result1 = GetUglyNumber_Solution1(100);
	cout << "result is :" << result1 << endl;
	int result2 = GetUglyNumber_Solution2(1500);
	cout << "result is :" << result2 << endl;
	system("PAUSE");
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值