在 Linux 和 Windows 系统下查看 CUDA 和 cuDNN 版本的方法,包括使用 nvcc 命令

一直都比较头疼cuda与cudnn版本查看问题,两个系统不一样也不好查看,命令不通用

Linux

查看 CUDA 版本

方法一:

nvcc --version

nvcc -V

如果 nvcc 没有安装,那么用方法二。

方法二:

去安装目录下查看:

cat /usr/local/cuda/version.txt

查看 cuDNN 版本

cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2

如果没有,那么可能没有安装 cuDNN。

如果是为了使用 PyTorch/TensorFlow,在 Linux 服务器上推荐使用 conda 安装,使用 conda 可以很方便安装 PyTorch/TensorFlow 以及对应版本的 CUDA 和 cuDNN。

Windows

查看 CUDA 版本

在命令行中执行:

nvcc --version

或者进入 CUDA 的安装目录查看:

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA

查看 cuDNN 版本

进入 CUDA 的安装目录查看文件 cudnn.h :(注意修改v9.0)

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0\include\cudnn.h

如下所示,cuDNN 版本为 7.2.1 :

使用 PyTorch 查看 CUDA 和 cuDNN 版本

import torch

print(torch.__version__)

print(torch.version.cuda)
print(torch.backends.cudnn.version())
<think>好的,用户想要了解如何查看CUDAcuDNN版本。首先,我需要回忆一下自己知道的命令,并确保这些方法在常见系统上有效。CUDA是NVIDIA的并行计算平台,cuDNN是针对深度学习的GPU加速库。用户可能是在配置深度学习环境时遇到了版本问题,需要确认版本是否兼容。 首先,关于CUDA版本查看,通常有几种方法。第一种是通过nvcc命令,这是CUDA的编译器驱动。运行nvcc --version或者nvcc -V可以显示CUDA版本。不过有时候,用户可能安装了多个CUDA版本,或者环境变量设置不同,导致显示的版本与实际使用的不同。这时候需要检查环境变量PATHLD_LIBRARY_PATH是否指向正确的CUDA安装路径。另外,用户可能没有将CUDA的bin目录添加到PATH中,导致无法运行nvcc,这时候需要指导他们如何正确设置环境变量。 第二种方法是检查CUDA的库文件。CUDA的库通常位于/usr/local/cuda/lib64目录下,查看libcudart.so文件的具体版本使用ls -l命令查看符号链接的指向,或者用cat命令读取version.txt文件。这种方法适用于没有安装nvcc的情况,但需要用户知道库文件的位置,可能因安装方式不同而路径有所变化。 第三种方法是通过NVIDIA的官方工具nvidia-smi。运行nvidia-smi后,在右上角可以看到CUDA版本。不过需要注意的是,这里显示的是驱动支持的最高CUDA版本,而不是当前系统实际使用版本。用户可能会混淆这两者,需要明确说明区别。 接下来是cuDNN版本查看cuDNN版本检查稍微复杂一些,因为它没有直接提供版本命令。常用的方法是通过头文件或库文件来查看。检查头文件cudnn_version.h,可以使用cat命令显示其中的版本信息。或者查看库文件libcudnn.so的符号链接,版本号通常会包含在文件名中。此外,Python用户如果安装了cudnn模块,可以通过导入模块并打印版本号来获取,但这需要预先安装相应的Python包,可能不适用于所有情况。 需要考虑到用户可能的系统环境,比如LinuxWindows或macOS。上述命令主要是针对Linux系统的,如果是Windows用户,可能需要指导他们使用where命令查找nvcc.exe的位置,或者通过文件资源管理器查找CUDA安装目录下的版本文件。同时,提醒用户注意路径中的空格转义字符,避免命令执行错误。 用户可能的深层需求是确保CUDAcuDNN版本兼容,以支持特定的深度学习框架,比如TensorFlow或PyTorch。因此,在回答中可以建议用户参考框架的官方文档,确认所需的版本匹配情况。此外,如果用户遇到版本不匹配的问题,可能需要指导他们如何升级或降级CUDAcuDNN,或者使用虚拟环境管理不同的版本。 最后,总结步骤时要清晰,分点列出每种方法,并注明注意事项,比如版本显示的可能差异常见误区。确保用户能够根据自身情况选择合适的方法,并理解输出结果的含义。可能还需要提醒用户,如果遇到权限问题,可能需要使用sudo或者切换至有权限的用户执行命令。</think>以下是查看CUDAcuDNN版本的详细方法,分步骤说明: ### 一、查看CUDA版本 #### 方法1:通过nvcc命令 ```bash nvcc --version ``` 或 ```bash nvcc -V ``` 输出示例: ``` nvcc: NVIDIA (R) Cuda compiler driver Copyright (c) 2005-2023 NVIDIA Corporation Built on Wed_Nov_22_10:17:15_PST_2023 Cuda compilation tools, release 12.3, V12.3.107 Build cuda_12.3.r12.3/compiler.33567101_0 ``` 关键信息:`release 12.3` 表示CUDA 12.3 #### 方法2:检查CUDA库文件 ```bash cat /usr/local/cuda/version.txt ``` 输出示例: ``` CUDA Version 11.8.89 ``` #### 方法3:通过nvidia-smi(显示驱动支持的最高CUDA版本) ```bash nvidia-smi ``` 右上角显示如:`CUDA Version: 12.3` ### 二、查看cuDNN版本 #### 方法1:检查头文件版本 ```bash cat /usr/include/cudnn_version.h | grep CUDNN_MAJOR -A 2 ``` 输出示例: ``` #define CUDNN_MAJOR 8 #define CUDNN_MINOR 9 #define CUDNN_PATCHLEVEL 6 ``` 版本为:**8.9.6** #### 方法2:查看库文件版本 ```bash cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2 ``` (旧版cuDNN)或 ```bash cat /usr/local/cuda/include/cudnn_version.h | grep CUDNN_MAJOR -A 2 ``` #### 方法3:Python验证(需安装cudnn包) ```python from tensorflow.python.platform import build_info print(build_info.cudnn_version) ``` ### 三、常见问题说明 1. **版本不一致问题**:`nvidia-smi`显示的CUDA版本是驱动支持的最高版本,实际使用CUDA版本由`nvcc --version`决定 2. **多版本共存**:可通过`ls -l /usr/local/cuda*`查看所有CUDA安装路径 3. **路径问题**:若命令失效,检查是否将CUDA加入环境变量: ```bash export PATH=/usr/local/cuda/bin:$PATH export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH ``` 建议结合深度学习框架的版本要求选择对应CUDA/cuDNN组合,例如: - TensorFlow 2.10 → CUDA 11.2 + cuDNN 8.1 - PyTorch 2.0 → CUDA 11.7/11.8 + cuDNN 8.5
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

kelly1250230225

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值