model.named_children()
是torch.nn.Module
类中的一个方法(modle是torch.nn.Module的一个实例)返回一个迭代器,该迭代器生成模型的所有子模块及其名称,以元组(name, module)
的形式返回,name
是子模块的名称,module
是子模块本身
例如:
import torch
import torch.nn as nn
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1)
self.relu = nn.ReLU()
self.conv2 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1)
def forward(self, x):
x = self.conv1(x)
x = self.relu(x)
x = self.conv2(x)
return x
model = MyModel()
for name, module in model.named_children():
print(name, module)
输出结果如下:
conv1 Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
relu ReLU()
conv2 Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
在上面的示例中,model.named_children()
返回了模型MyModel
的三个子模块及其名称
可以看到,conv1
、relu
和conv2
是模型的子模块的名称,它们分别是nn.Conv2d
和nn.ReLU
的实例
通过使用named_children()
方法可以方便地遍历模型的子模块,并对它们进行进一步的操作或分析