背景简介
通过人工智能的机器视觉算法,对遥感影像进行识别,对地、物进行分类,通过语义分割算法从视觉上,对不同分类进行颜色标注,可以很直观的加以区分,方便对遥感影像进行处理,极大的改善了通过人力资源,对影像识别的现状,提高了工作识别效率
语义分割算法模型
- 卷积神经网络
卷积神经网络是在全连接网络(多层感知机)的基础上发展而来的,是一种带有卷积结构的深度神经网络,卷积结构可以减少深层网络占用的内存量,其三个关键的操作,其一是局部感受野,其二是权值共享,其三是pooling层,有效的减少了网络的参数个数,缓解了模型的过拟合问题。 - 语义分割
图像语义分割(semantic segmentation),从字面意思上理解就是让计算机根据图像的语义来进行分割。在图像领域,语义指的是图像的内容,对图片意思的理解。分割的意思是从像素的角度分割出图片中的不同对象,对原图中的每个像素都进行标注。 - Unet网络
选择UNet网络进行样本的训练,有两个优点:
1、可以在小数据集上也能训练出一个好的模型;
2、UNet在训练速度上也是非常快的。
网络拓扑图如下:

其中:整个网络选择卷积神经网络进行搭建,下采样卷积核采取conv 33结构,卷积后连接BN层,
本文介绍了利用卷积神经网络(CNN)进行遥感影像语义分割,通过Unet网络模型在小数据集上进行训练,提高遥感影像识别效率。文章详细阐述了模型训练过程,包括数据集准备、Lableme工具的标注使用,以及模型训练的超参数调整。
最低0.47元/天 解锁文章
9796

被折叠的 条评论
为什么被折叠?



