分布式多智能体系统架构:从算力协同到微服务部署的工程化实践
一、引言:当智能体规模突破百级:分布式架构为何成为必选项?
在多智能体系统(MAS)从“实验室Demo”走向“工业级应用”的过程中,传统集中式架构逐渐暴露短板:
- 算力瓶颈:单节点难以支撑数百智能体的并发计算需求
- 部署混乱:智能体与服务组件的依赖关系复杂,版本管理失控
- 容错性差:单点故障可能导致整个系统瘫痪
分布式架构通过将算力、存储、服务解耦为可扩展的集群,成为破解上述难题的核心方案。本文结合动态资源分配算法、微服务化部署实践及DeepSeek大模型训练案例,带你掌握分布式MAS架构设计的核心技术。
二、算力网络协同:让资源调度“快如闪电”
1. 传统资源分配的三大痛点
问题 | 集中式调度弊端 | 分布式解决方案核心思路 |
---|---|---|
算力利用率低下</ |