6、表的增删改查
CRUD : Create(创建), Retrieve(读取),Update(更新),Delete(删除)
6.1、Create
语法:
INSERT [INTO] table_name
[(column [, column] ...)]
VALUES (value_list) [, (value_list)] ...
value_list: value, [, value] ...
案例:
-- 创建一张学生表
CREATE TABLE students (
id INT UNSIGNED PRIMARY KEY AUTO_INCREMENT,
sn INT NOT NULL UNIQUE COMMENT '学号',
name VARCHAR(20) NOT NULL,
qq VARCHAR(20)
);
6.1.1、单行数据 + 全列插入
-- 插入两条记录,value_list 数量必须和定义表的列的数量及顺序一致
-- 注意,这里在插入的时候,也可以不用指定id(当然,那时候就需要明确插入数据到那些列了),那么mysql会使用默认的值进行自增。
INSERT INTO students VALUES (100, 10000, '唐三藏', NULL);
Query OK, 1 row affected (0.02 sec)
INSERT INTO students VALUES (101, 10001, '孙悟空', '11111');
Query OK, 1 row affected (0.02 sec)
-- 查看插入结果
SELECT * FROM students;
+-----+-------+-----------+-------+
| id | sn | name | qq |
+-----+-------+-----------+-------+
| 100 | 10000 | 唐三藏 | NULL |
| 101 | 10001 | 孙悟空 | 11111 |
+-----+-------+-----------+-------+
2 rows in set (0.00 sec)
6.1.2、多行数据 + 指定列插入
-- 插入两条记录,value_list 数量必须和指定列数量及顺序一致
INSERT INTO students (id, sn, name) VALUES
(102, 20001, '曹孟德'),
(103, 20002, '孙仲谋');
Query OK, 2 rows affected (0.02 sec)
Records: 2 Duplicates: 0 Warnings: 0
-- 查看插入结果
SELECT * FROM students;
+-----+-------+-----------+-------+
| id | sn | name | qq |
+-----+-------+-----------+-------+
| 100 | 10000 | 唐三藏 | NULL |
| 101 | 10001 | 孙悟空 | 11111 |
| 102 | 20001 | 曹孟德 | NULL |
| 103 | 20002 | 孙仲谋 | NULL |
+-----+-------+-----------+-------+
4 rows in set (0.00 sec)
6.1.3、插入否则更新
由于 主键 或者 唯一键 对应的值已经存在而导致插入失败
-- 主键冲突
INSERT INTO students (id, sn, name) VALUES (100, 10010, '唐大师');
ERROR 1062 (23000): Duplicate entry '100' for key 'PRIMARY'
-- 唯一键冲突
INSERT INTO students (sn, name) VALUES (20001, '曹阿瞒');
ERROR 1062 (23000): Duplicate entry '20001' for key 'sn'
可以选择性的进行同步更新操作语法:
INSERT ... ON DUPLICATE KEY UPDATE
column = value [, column = value] ...
INSERT INTO students (id, sn, name) VALUES (100, 10010, '唐大师')
ON DUPLICATE KEY UPDATE sn = 10010, name = '唐大师';
Query OK, 2 rows affected (0.47 sec)
-- 0 row affected: 表中有冲突数据,但冲突数据的值和 update 的值相等
-- 1 row affected: 表中没有冲突数据,数据被插入
-- 2 row affected: 表中有冲突数据,并且数据已经被更新
-- 通过 MySQL 函数获取受到影响的数据行数
SELECT ROW_COUNT();
+-------------+
| ROW_COUNT() |
+-------------+
| 2 |
+-------------+
1 row in set (0.00 sec)
-- ON DUPLICATE KEY 当发生重复key的时候
6.1.4、替换
-- 主键 或者 唯一键 没有冲突,则直接插入;
-- 主键 或者 唯一键 如果冲突,则删除后再插入
REPLACE INTO students (sn, name) VALUES (20001, '曹阿瞒');
Query OK, 2 rows affected (0.00 sec)
-- 1 row affected: 表中没有冲突数据,数据被插入
-- 2 row affected: 表中有冲突数据,删除后重新插入
6.2、Retrieve
语法:
SELECT
[DISTINCT] {* | {column [, column] ...}
[FROM table_name]
[WHERE ...]
[ORDER BY column [ASC | DESC], ...]
LIMIT ...
案例:
-- 创建表结构
CREATE TABLE exam_result (
id INT UNSIGNED PRIMARY KEY AUTO_INCREMENT,
name VARCHAR(20) NOT NULL COMMENT '同学姓名',
chinese float DEFAULT 0.0 COMMENT '语文成绩',
math float DEFAULT 0.0 COMMENT '数学成绩',
english float DEFAULT 0.0 COMMENT '英语成绩'
);
-- 插入测试数据
INSERT INTO exam_result (name, chinese, math, english) VALUES
('唐三藏', 67, 98, 56),
('孙悟空', 87, 78, 77),
('猪悟能', 88, 98, 90),
('曹孟德', 82, 84, 67),
('刘玄德', 55, 85, 45),
('孙权', 70, 73, 78),
('宋公明', 75, 65, 30);
Query OK, 7 rows affected (0.00 sec)
Records: 7 Duplicates: 0 Warnings: 0
6.2.1、SELECT 列
6.2.1.1、全列查询
-- 通常情况下不建议使用 * 进行全列查询
-- 1. 查询的列越多,意味着需要传输的数据量越大;
-- 2. 可能会影响到索引的使用。(索引待后面课程讲解)
SELECT * FROM exam_result;
+----+-----------+---------+--------+---------+
| id | name | chinese | math | english |
+----+-----------+---------+--------+---------+
| 1 | 唐三藏 | 67 | 98 | 56 |
| 2 | 孙悟空 | 87 | 78 | 77 |
| 3 | 猪悟能 | 88 | 98 | 90 |
| 4 | 曹孟德 | 82 | 84 | 67 |
| 5 | 刘玄德 | 55 | 85 | 45 |
| 6 | 孙权 | 70 | 73 | 78 |
| 7 | 宋公明 | 75 | 65 | 30 |
+----+-----------+---------+--------+---------+
7 rows in set (0.00 sec)
6.2.1.2、指定列查询
-- 指定列的顺序不需要按定义表的顺序来
SELECT id, name, english FROM exam_result;
+----+-----------+---------+
| id | name | english |
+----+-----------+---------+
| 1 | 唐三藏 | 56 |
| 2 | 孙悟空 | 77 |
| 3 | 猪悟能 | 90 |
| 4 | 曹孟德 | 67 |
| 5 | 刘玄德 | 45 |
| 6 | 孙权 | 78 |
| 7 | 宋公明 | 30 |
+----+-----------+---------+
7 rows in set (0.00 sec)
6.2.1.2、查询字段为表达式
-- 表达式不包含字段
SELECT id, name, 10 FROM exam_result;
+----+-----------+----+
| id | name | 10 |
+----+-----------+----+
| 1 | 唐三藏 | 10 |
| 2 | 孙悟空 | 10 |
| 3 | 猪悟能 | 10 |
| 4 | 曹孟德 | 10 |
| 5 | 刘玄德 | 10 |
| 6 | 孙权 | 10 |
| 7 | 宋公明 | 10 |
+----+-----------+----+
7 rows in set (0.00 sec)
-- 表达式包含一个字段
SELECT id, name, english + 10 FROM exam_result;
+----+-----------+--------------+
| id | name | english + 10 |
+----+-----------+--------------+
| 1 | 唐三藏 | 66 |
| 2 | 孙悟空 | 87 |
| 3 | 猪悟能 | 100 |
| 4 | 曹孟德 | 77 |
| 5 | 刘玄德 | 55 |
| 6 | 孙权 | 88 |
| 7 | 宋公明 | 40 |
+----+-----------+--------------+
7 rows in set (0.00 sec)
-- 表达式包含多个字段
SELECT id, name, chinese + math + english FROM exam_result;
+----+-----------+-------------------------+
| id | name | chinese + math + english |
+----+-----------+-------------------------+
| 1 | 唐三藏 | 221 |
| 2 | 孙悟空 | 242 |
| 3 | 猪悟能 | 276 |
| 4 | 曹孟德 | 233 |
| 5 | 刘玄德 | 185 |
| 6 | 孙权 | 221 |
| 7 | 宋公明 | 170 |
+----+-----------+-------------------------+
7 rows in set (0.00 sec)
6.2.1.4、为查询结果指定别名
语法:
SELECT column [AS] alias_name [...] FROM table_name;
SELECT id, name, chinese + math + english 总分 FROM exam_result;
+----+-----------+--------+
| id | name | 总分 |
+----+-----------+--------+
| 1 | 唐三藏 | 221 |
| 2 | 孙悟空 | 242 |
| 3 | 猪悟能 | 276 |
| 4 | 曹孟德 | 233 |
| 5 | 刘玄德 | 185 |
| 6 | 孙权 | 221 |
| 7 | 宋公明 | 170 |
+----+-----------+--------+
7 rows in set (0.00 sec)
6.2.1.5、结果去重
-- 98 分重复了
SELECT math FROM exam_result;
+--------+
| math |
+--------+
| 98 |
| 78 |
| 98 |
| 84 |
| 85 |
| 73 |
| 65 |
+--------+
7 rows in set (0.00 sec)
-- 去重结果
SELECT DISTINCT math FROM exam_result;
+--------+
| math |
+--------+
| 98 |
| 78 |
| 84 |
| 85 |
| 73 |
| 65 |
+--------+
6 rows in set (0.00 sec)
6.2.2、WHERE 条件
比较运算符:
运算符 | 说明 |
>, >=, <, <= | 大于,大于等于,小于,小于等于 |
= | 等于,NULL 不安全,例如 NULL = NULL 的结果是 NULL |
<=> | 等于,NULL 安全,例如 NULL <=> NULL 的结果是 TRUE(1) |
!=, <> | 不等于 |
BETWEEN a0 AND a1 | 范围匹配,[a0, a1],如果 a0 <= value <= a1,返回 TRUE(1) |
IN (option, ...) | 如果是 option 中的任意一个,返回 TRUE(1) |
IS NULL | 是 NULL |
IS NOT NULL | 不是 NULL |
LIKE | 模糊匹配。% 表示任意多个(包括 0 个)任意字符;_ 表示任意一个字符 |
逻辑运算符:
运算符 | 说明 |
AND | 多个条件必须都为 TRUE(1),结果才是 TRUE(1) |
OR | 任意一个条件为 TRUE(1), 结果为 TRUE(1) |
NOT | 条件为 TRUE(1),结果为 FALSE(0) |
案例:
6.2.2.1、英语不及格的同学及英语成绩( < 60 )
-- 基本比较
SELECT name, english FROM exam_result WHERE english < 60;
+-----------+---------+
| name | english |
+-----------+---------+
| 唐三藏 | 56 |
| 刘玄德 | 45 |
| 宋公明 | 30 |
+-----------+---------+
3 rows in set (0.01 sec)
6.2.2.2、语文成绩在 [80, 90] 分的同学及语文成绩
-- 使用 AND 进行条件连接
SELECT name, chinese FROM exam_result WHERE chinese >= 80 AND chinese <= 90;
+-----------+--------+
| name | chinese |
+-----------+--------+
| 孙悟空 | 87 |
| 猪悟能 | 88 |
| 曹孟德 | 82 |
+-----------+--------+
3 rows in set (0.00 sec)
-- 使用 BETWEEN ... AND ... 条件
SELECT name, chinese FROM exam_result WHERE chinese BETWEEN 80 AND 90;
+-----------+---------+
| name | chinese |
+-----------+---------+
| 孙悟空 | 87 |
| 猪悟能 | 88 |
| 曹孟德 | 82 |
+-----------+---------+
3 rows in set (0.00 sec)
6.2.2.3、数学成绩是 58 或者 59 或者 98 或者 99 分的同学及数学成绩
-- 使用 OR 进行条件连接
SELECT name, math FROM exam_result
WHERE math = 58
OR math = 59
OR math = 98
OR math = 99;
+-----------+--------+
| name | math |
+-----------+--------+
| 唐三藏 | 98 |
| 猪悟能 | 98 |
+-----------+--------+
2 rows in set (0.01 sec)
-- 使用 IN 条件
SELECT name, math FROM exam_result WHERE math IN (58, 59, 98, 99);
+-----------+--------+
| name | math |
+-----------+--------+
| 唐三藏 | 98 |
| 猪悟能 | 98 |
+-----------+--------+
2 rows in set (0.00 sec)
6.2.2.4、姓孙的同学 及 孙某同学
-- % 匹配任意多个(包括 0 个)任意字符
SELECT name FROM exam_result WHERE name LIKE '孙%';
+-----------+
| name |
+-----------+
| 孙悟空 |
| 孙权 |
+-----------+
2 rows in set (0.00 sec)
-- _ 匹配严格的一个任意字符
SELECT name FROM exam_result WHERE name LIKE '孙_';
+--------+
| name |
+--------+
| 孙权 |
+--------+
1 row in set (0.00 sec)
6.2.2.5、语文成绩好于英语成绩的同学
-- WHERE 条件中比较运算符两侧都是字段
SELECT name, chinese, english FROM exam_result WHERE chinese > english;
+-----------+---------+---------+
| name | chinese | english |
+-----------+---------+---------+
| 唐三藏 | 67 | 56 |
| 孙悟空 | 87 | 77 |
| 曹孟德 | 82 | 67 |
| 刘玄德 | 55 | 45 |
| 宋公明 | 75 | 30 |
+-----------+---------+---------+
5 rows in set (0.00 sec)
6.2.2.6、总分在 200 分以下的同学
-- WHERE 条件中使用表达式
-- 别名不能用在 WHERE 条件中
SELECT name, chinese + math + english 总分 FROM exam_result
WHERE chinese + math + english < 200;
+-----------+--------+
| name | 总分 |
+-----------+--------+
| 刘玄德 | 185 |
| 宋公明 | 170 |
+-----------+--------+
2 rows in set (0.00 sec)
6.2.2.7、语文成绩 > 80 并且不姓孙的同学
-- AND 与 NOT 的使用
SELECT name, chinese FROM exam_result
WHERE chinese > 80 AND name NOT LIKE '孙%';
+----+-----------+---------+--------+--------+
| id | name | chinese | math | english |
+----+-----------+---------+--------+--------+
| 3 | 猪悟能 | 88 | 98 | 90 |
| 4 | 曹孟德 | 82 | 84 | 67 |
+----+-----------+---------+--------+--------+
2 rows in set (0.00 sec)
6.2.2.6、语文成绩 > 80 并且不姓孙的同学
-- AND 与 NOT 的使用
SELECT name, chinese FROM exam_result
WHERE chinese > 80 AND name NOT LIKE '孙%';
+----+-----------+---------+--------+--------+
| id | name | chinese | math | english |
+----+-----------+---------+--------+--------+
| 3 | 猪悟能 | 88 | 98 | 90 |
| 4 | 曹孟德 | 82 | 84 | 67 |
+----+-----------+-------+--------+--------+
2 rows in set (0.00 sec)
6.2.2.8、孙某同学,否则要求总成绩 > 200 并且 语文成绩 < 数学成绩 并且 英语成绩 > 80
-- 综合性查询
SELECT name, chinese, math, english, chinese + math + english 总分
FROM exam_result
WHERE name LIKE '孙_' OR (
chinese + math + english > 200 AND chinese < math AND english > 80
);
+-----------+---------+--------+---------+--------+
| name | chinese | math | english | 总分 |
+-----------+---------+--------+---------+--------+
| 猪悟能 | 88 | 98 | 90 | 276 |
| 孙权 | 70 | 73 | 78 | 221 |
+-----------+---------+--------+---------+--------+
2 rows in set (0.00 sec)
6.2.2.9、NULL 的查询
-- 查询 students 表
+-----+-------+-----------+-------+
| id | sn | name | qq |
+-----+-------+-----------+-------+
| 100 | 10010 | 唐大师 | NULL |
| 101 | 10001 | 孙悟空 | 11111 |
| 103 | 20002 | 孙仲谋 | NULL |
| 104 | 20001 | 曹阿瞒 | NULL |
+-----+-------+-----------+-------+
4 rows in set (0.00 sec)
-- 查询 qq 号已知的同学姓名
SELECT name, qq FROM students WHERE qq IS NOT NULL;
+-----------+-------+
| name | qq |
+-----------+-------+
| 孙悟空 | 11111 |
+-----------+-------+
1 row in set (0.00 sec)
-- NULL 和 NULL 的比较,= 和 <=> 的区别
SELECT NULL = NULL, NULL = 1, NULL = 0;
+-------------+----------+----------+
| NULL = NULL | NULL = 1 | NULL = 0 |
+-------------+----------+----------+
| NULL | NULL | NULL |
+-------------+----------+----------+
1 row in set (0.00 sec)
SELECT NULL <=> NULL, NULL <=> 1, NULL <=> 0;
+---------------+------------+------------+
| NULL <=> NULL | NULL <=> 1 | NULL <=> 0 |
+---------------+------------+------------+
| 1 | 0 | 0 |
+---------------+------------+------------+
1 row in set (0.00 sec)
6.2.3、结果排序
语法:
-- ASC 为升序(从小到大)
-- DESC 为降序(从大到小)
-- 默认为 ASC
SELECT ... FROM table_name [WHERE ...]
ORDER BY column [ASC|DESC], [...];
注意:没有 ORDER BY 子句的查询,返回的顺序是未定义的,永远不要依赖这个顺序
案例:
6.2.3.1、同学及数学成绩,按数学成绩升序显示
SELECT name, math FROM exam_result ORDER BY math;
+-----------+--------+
| name | math |
+-----------+--------+
| 宋公明 | 65 |
| 孙权 | 73 |
| 孙悟空 | 78 |
| 曹孟德 | 84 |
| 刘玄德 | 85 |
| 唐三藏 | 98 |
| 猪悟能 | 98 |
+-----------+--------+
7 rows in set (0.00 sec)
6.2.3.2、同学及 qq 号,按 qq 号排序显示
-- NULL 视为比任何值都小,升序出现在最上面
SELECT name, qq FROM students ORDER BY qq;
+-----------+-------+
| name | qq |
+-----------+-------+
| 唐大师 | NULL |
| 孙仲谋 | NULL |
| 曹阿瞒 | NULL |
| 孙悟空 | 11111 |
+-----------+-------+
4 rows in set (0.00 sec)
-- NULL 视为比任何值都小,降序出现在最下面
SELECT name, qq FROM students ORDER BY qq DESC;
+-----------+-------+
| name | qq |
+-----------+-------+
| 孙悟空 | 11111 |
| 唐大师 | NULL |
| 孙仲谋 | NULL |
| 曹阿瞒 | NULL |
+-----------+-------+
4 rows in set (0.00 sec)
6.2.3.3、查询同学各门成绩,依次按 数学降序,英语升序,语文升序的方式显示
-- 多字段排序,排序优先级随书写顺序
SELECT name, math, english, chinese FROM exam_result
ORDER BY math DESC, english, chinese;
+-----------+--------+---------+---------+
| name | math | english | chinese |
+-----------+--------+---------+---------+
| 唐三藏 | 98 | 56 | 67 |
| 猪悟能 | 98 | 90 | 88 |
| 刘玄德 | 85 | 45 | 55 |
| 曹孟德 | 84 | 67 | 82 |
| 孙悟空 | 78 | 77 | 87 |
| 孙权 | 73 | 78 | 70 |
| 宋公明 | 65 | 30 | 75 |
+-----------+--------+---------+---------+
7 rows in set (0.00 sec)
6.2.3.4、查询同学及总分,由高到低
-- ORDER BY 中可以使用表达式
SELECT name, chinese + english + math FROM exam_result
ORDER BY chinese + english + math DESC;
+-----------+--------------------------+
| name | chinese + english + math |
+-----------+--------------------------+
| 猪悟能 | 276 |
| 孙悟空 | 242 |
| 曹孟德 | 233 |
| 唐三藏 | 221 |
| 孙权 | 221 |
| 刘玄德 | 185 |
| 宋公明 | 170 |
+-----------+-------------------------+
7 rows in set (0.00 sec)
-- ORDER BY 子句中可以使用列别名
SELECT name, chinese + english + math 总分 FROM exam_result
ORDER BY 总分 DESC;
+-----------+--------+
| name | 总分 |
+-----------+--------+
| 猪悟能 | 276 |
| 孙悟空 | 242 |
| 曹孟德 | 233 |
| 唐三藏 | 221 |
| 孙权 | 221 |
| 刘玄德 | 185 |
| 宋公明 | 170 |
+-----------+--------+
7 rows in set (0.00 sec)
6.2.3.5、查询姓孙的同学或者姓曹的同学数学成绩,结果按数学成绩由高到低显示
-- 结合 WHERE 子句 和 ORDER BY 子句
SELECT name, math FROM exam_result
WHERE name LIKE '孙%' OR name LIKE '曹%'
ORDER BY math DESC;
+-----------+--------+
| name | math |
+-----------+--------+
| 曹孟德 | 84 |
| 孙悟空 | 78 |
| 孙权 | 73 |
+-----------+--------+
3 rows in set (0.00 sec)
6.2.4、筛选分页结果
语法:
-- 起始下标为 0
-- 从 0 开始,筛选 n 条结果
SELECT ... FROM table_name [WHERE ...] [ORDER BY ...] LIMIT n;
-- 从 s 开始,筛选 n 条结果
SELECT ... FROM table_name [WHERE ...] [ORDER BY ...] LIMIT s, n;
-- 从 s 开始,筛选 n 条结果,比第二种用法更明确,建议使用
SELECT ... FROM table_name [WHERE ...] [ORDER BY ...] LIMIT n OFFSET s;
建议:对未知表进行查询时,最好加一条 LIMIT 1,避免因为表中数据过大,查询全表数据导致数据库卡死 按 id 进行分页,每页 3 条记录,分别显示 第 1、2、3 页
-- 第 1 页
SELECT id, name, math, english, chinese FROM exam_result
ORDER BY id LIMIT 3 OFFSET 0;
+----+-----------+--------+---------+---------+
| id | name | math | english | chinese |
+----+-----------+--------+---------+---------+
| 1 | 唐三藏 | 98 | 56 | 67 |
| 2 | 孙悟空 | 78 | 77 | 87 |
| 3 | 猪悟能 | 98 | 90 | 88 |
+----+-----------+--------+---------+---------+
3 rows in set (0.02 sec)
-- 第 2 页
SELECT id, name, math, english, chinese FROM exam_result
ORDER BY id LIMIT 3 OFFSET 3;
+----+-----------+--------+---------+---------+
| id | name | math | english | chinese |
+----+-----------+--------+---------+---------+
| 4 | 曹孟德 | 84 | 67 | 82 |
| 5 | 刘玄德 | 85 | 45 | 55 |
| 6 | 孙权 | 73 | 78 | 70 |
+----+-----------+--------+---------+---------+
3 rows in set (0.00 sec)
-- 第 3 页,如果结果不足 3 个,不会有影响
SELECT id, name, math, english, chinese FROM exam_result
ORDER BY id LIMIT 3 OFFSET 6;
+----+-----------+--------+---------+---------+
| id | name | math | english | chinese |
+----+-----------+--------+---------+---------+
| 7 | 宋公明 | 65 | 30 | 75 |
+----+-----------+--------+---------+---------+
1 row in set (0.00 sec)
6.3、Update
语法:
UPDATE table_name SET column = expr [, column = expr ...]
[WHERE ...] [ORDER BY ...] [LIMIT ...]
对查询到的结果进行列值更新
案例:
6.3.1、将孙悟空同学的数学成绩变更为 80 分
-- 更新值为具体值
-- 查看原数据
SELECT name, math FROM exam_result WHERE name = '孙悟空';
+-----------+--------+
| name | math |
+-----------+--------+
| 孙悟空 | 78 |
+-----------+--------+
1 row in set (0.00 sec)
-- 数据更新
UPDATE exam_result SET math = 80 WHERE name = '孙悟空';
Query OK, 1 row affected (0.04 sec)
Rows matched: 1 Changed: 1 Warnings: 0
-- 查看更新后数据
SELECT name, math FROM exam_result WHERE name = '孙悟空';
+-----------+--------+
| name | math |
+-----------+--------+
| 孙悟空 | 80 |
+-----------+--------+
1 row in set (0.00 sec)
6.3.2、将曹孟德同学的数学成绩变更为 60 分,语文成绩变更为 70 分
-- 一次更新多个列
-- 查看原数据
SELECT name, math, chinese FROM exam_result WHERE name = '曹孟德';
+-----------+--------+---------+
| name | math | chinese |
+-----------+--------+---------+
| 曹孟德 | 84 | 82 |
+-----------+--------+---------+
1 row in set (0.00 sec)
-- 数据更新
UPDATE exam_result SET math = 60, chinese = 70 WHERE name = '曹孟德';
Query OK, 1 row affected (0.14 sec)
Rows matched: 1 Changed: 1 Warnings: 0
-- 查看更新后数据
SELECT name, math, chinese FROM exam_result WHERE name = '曹孟德';
+-----------+--------+---------+
| name | math | chinese |
+-----------+--------+---------+
| 曹孟德 | 60 | 70 |
+-----------+--------+---------+
1 row in set (0.00 sec)
6.3.3、将总成绩倒数前三的 3 位同学的数学成绩加上 30 分
-- 更新值为原值基础上变更
-- 查看原数据
-- 别名可以在ORDER BY中使用
SELECT name, math, chinese + math + english 总分 FROM exam_result
ORDER BY 总分 LIMIT 3;
+-----------+--------+--------+
| name | math | 总分 |
+-----------+--------+--------+
| 宋公明 | 65 | 170 |
| 刘玄德 | 85 | 185 |
| 曹孟德 | 60 | 197 |
+-----------+--------+--------+
3 rows in set (0.00 sec)
-- 数据更新,不支持 math += 30 这种语法
UPDATE exam_result SET math = math + 30
ORDER BY chinese + math + english LIMIT 3;
-- 查看更新后数据
-- 思考:这里还可以按总分升序排序取前 3 个么?
SELECT name, math, chinese + math + english 总分 FROM exam_result
WHERE name IN ('宋公明', '刘玄德', '曹孟德');
+-----------+--------+--------+
| name | math | 总分 |
+-----------+--------+--------+
| 曹孟德 | 90 | 227 |
| 刘玄德 | 115 | 215 |
| 宋公明 | 95 | 200 |
+-----------+--------+--------+
3 rows in set (0.00 sec)
-- 按总成绩排序后查询结果
SELECT name, math, chinese + math + english 总分 FROM exam_result
ORDER BY 总分 LIMIT 3;
+-----------+--------+--------+
| name | math | 总分 |
+-----------+--------+--------+
| 宋公明 | 95 | 200 |
| 刘玄德 | 115 | 215 |
| 唐三藏 | 98 | 221 |
+-----------+--------+--------+
3 rows in set (0.00 sec)
6.3.4、将所有同学的语文成绩更新为原来的 2 倍
注意:更新全表的语句慎用!
-- 没有 WHERE 子句,则更新全表
-- 查看原数据
SELECT * FROM exam_result;
+----+-----------+---------+--------+---------+
| id | name | chinese | math | english |
+----+-----------+---------+--------+---------+
| 1 | 唐三藏 | 67 | 98 | 56 |
| 2 | 孙悟空 | 87 | 80 | 77 |
| 3 | 猪悟能 | 88 | 98 | 90 |
| 4 | 曹孟德 | 70 | 90 | 67 |
| 5 | 刘玄德 | 55 | 115 | 45 |
| 6 | 孙权 | 70 | 73 | 78 |
| 7 | 宋公明 | 75 | 95 | 30 |
+----+-----------+-------+--------+--------+
7 rows in set (0.00 sec)
-- 数据更新
UPDATE exam_result SET chinese = chinese * 2;
Query OK, 7 rows affected (0.00 sec)
Rows matched: 7 Changed: 7 Warnings: 0
-- 查看更新后数据
SELECT * FROM exam_result;
+----+-----------+---------+--------+--------+
| id | name | chinese | math | english |
+----+-----------+---------+--------+--------+
| 1 | 唐三藏 | 134 | 98 | 56 |
| 2 | 孙悟空 | 174 | 80 | 77 |
| 3 | 猪悟能 | 176 | 98 | 90 |
| 4 | 曹孟德 | 140 | 90 | 67 |
| 5 | 刘玄德 | 110 | 115 | 45 |
| 6 | 孙权 | 140 | 73 | 78 |
| 7 | 宋公明 | 150 | 95 | 30 |
+----+-----------+---------+--------+--------+
7 rows in set (0.00 sec)
6.4、Delete
6.4.1、删除数据
语法:
DELETE FROM table_name [WHERE ...] [ORDER BY ...] [LIMIT ...]
案例:
6.4.1.1、删除孙悟空同学的考试成绩
-- 查看原数据
SELECT * FROM exam_result WHERE name = '孙悟空';
+----+-----------+---------+--------+--------+
| id | name | chinese | math | english |
+----+-----------+---------+--------+--------+
| 2 | 孙悟空 | 174 | 80 | 77 |
+----+-----------+---------+--------+--------+
1 row in set (0.00 sec)
-- 删除数据
DELETE FROM exam_result WHERE name = '孙悟空';
Query OK, 1 row affected (0.17 sec)
-- 查看删除结果
SELECT * FROM exam_result WHERE name = '孙悟空';
Empty set (0.00 sec)
6.4.1.2、删除整张表数据
注意:删除整表操作要慎用!
-- 准备测试表
CREATE TABLE for_delete (
id INT PRIMARY KEY AUTO_INCREMENT,
name VARCHAR(20)
);
Query OK, 0 rows affected (0.16 sec)
-- 插入测试数据
INSERT INTO for_delete (name) VALUES ('A'), ('B'), ('C');
Query OK, 3 rows affected (1.05 sec)
Records: 3 Duplicates: 0 Warnings: 0
-- 查看测试数据
SELECT * FROM for_delete;
+----+------+
| id | name |
+----+------+
| 1 | A |
| 2 | B |
| 3 | C |
+----+------+
3 rows in set (0.00 sec)
-- 删除整表数据
DELETE FROM for_delete;
Query OK, 3 rows affected (0.00 sec)
-- 查看删除结果
SELECT * FROM for_delete;
Empty set (0.00 sec)
-- 再插入一条数据,自增 id 在原值上增长
INSERT INTO for_delete (name) VALUES ('D');
Query OK, 1 row affected (0.00 sec)
-- 查看数据
SELECT * FROM for_delete;
+----+------+
| id | name |
+----+------+
| 4 | D |
+----+------+
1 row in set (0.00 sec)
-- 查看表结构,会有 AUTO_INCREMENT=n 项
SHOW CREATE TABLE for_delete\G
*************************** 1. row ***************************
Table: for_delete
Create Table: CREATE TABLE `for_delete` (
`id` int(11) NOT NULL AUTO_INCREMENT,
`name` varchar(20) DEFAULT NULL,
PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=5 DEFAULT CHARSET=utf8
1 row in set (0.00 sec)
6.4.2、截断表
语法:
TRUNCATE [TABLE] table_name
注意:这个操作慎用
- 只能对整表操作,不能像 DELETE 一样针对部分数据操作;
- 实际上 MySQL 不对数据操作,所以比 DELETE 更快,但是TRUNCATE在删除数据的时候,并不经过真正的事物,所以无法回滚;
- 会重置 AUTO_INCREMENT 项;
-- 准备测试表
CREATE TABLE for_truncate (
id INT PRIMARY KEY AUTO_INCREMENT,
name VARCHAR(20)
);
Query OK, 0 rows affected (0.16 sec)
-- 插入测试数据
INSERT INTO for_truncate (name) VALUES ('A'), ('B'), ('C');
Query OK, 3 rows affected (1.05 sec)
Records: 3 Duplicates: 0 Warnings: 0
-- 查看测试数据
SELECT * FROM for_truncate;
+----+------+
| id | name |
+----+------+
| 1 | A |
| 2 | B |
| 3 | C |
+----+------+
3 rows in set (0.00 sec)
-- 截断整表数据,注意影响行数是 0,所以实际上没有对数据真正操作
TRUNCATE for_truncate;
Query OK, 0 rows affected (0.10 sec)
-- 查看删除结果
SELECT * FROM for_truncate;
Empty set (0.00 sec)
-- 再插入一条数据,自增 id 在重新增长
INSERT INTO for_truncate (name) VALUES ('D');
Query OK, 1 row affected (0.00 sec)
-- 查看数据
SELECT * FROM for_truncate;
+----+------+
| id | name |
+----+------+
| 1 | D |
+----+------+
1 row in set (0.00 sec)
-- 查看表结构,会有 AUTO_INCREMENT=2 项
SHOW CREATE TABLE for_truncate\G
*************************** 1. row ***************************
Table: for_truncate
Create Table: CREATE TABLE `for_truncate` (
`id` int(11) NOT NULL AUTO_INCREMENT,
`name` varchar(20) DEFAULT NULL,
PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=2 DEFAULT CHARSET=utf8
1 row in set (0.00 sec)
6.5、插入查询结果
语法:
INSERT INTO table_name [(column [, column ...])] SELECT ...
案例:删除表中的的重复复记录,重复的数据只能有一份
-- 创建原数据表
CREATE TABLE duplicate_table (id int, name varchar(20));
Query OK, 0 rows affected (0.01 sec)
-- 插入测试数据
INSERT INTO duplicate_table VALUES
(100, 'aaa'),
(100, 'aaa'),
(200, 'bbb'),
(200, 'bbb'),
(200, 'bbb'),
(300, 'ccc');
Query OK, 6 rows affected (0.00 sec)
Records: 6 Duplicates: 0 Warnings: 0
思路:
-- 创建一张空表 no_duplicate_table,结构和 duplicate_table 一样
CREATE TABLE no_duplicate_table LIKE duplicate_table;
Query OK, 0 rows affected (0.00 sec)
-- 将 duplicate_table 的去重数据插入到 no_duplicate_table
INSERT INTO no_duplicate_table SELECT DISTINCT * FROM duplicate_table;
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0
-- 通过重命名表,实现原子的去重操作
RENAME TABLE duplicate_table TO old_duplicate_table,
no_duplicate_table TO duplicate_table;
Query OK, 0 rows affected (0.00 sec)
-- 查看最终结果
SELECT * FROM duplicate_table;
+------+------+
| id | name |
+------+------+
| 100 | aaa |
| 200 | bbb |
| 300 | ccc |
+------+------+
3 rows in set (0.00 sec)
6.6、聚合函数
函数 | 说明 |
COUNT([DISTINCT] expr) | 返回查询到的数据的 数量 |
SUM([DISTINCT] expr) | 返回查询到的数据的 总和,不是数字没有意义 |
AVG([DISTINCT] expr) | 返回查询到的数据的 平均值,不是数字没有意义 |
MAX([DISTINCT] expr) | 返回查询到的数据的 最大值,不是数字没有意义 |
MIN([DISTINCT] expr) | 返回查询到的数据的 最小值,不是数字没有意义 |
案例:
6.6.1、统计班级共有多少同学
-- 使用 * 做统计,不受 NULL 影响
SELECT COUNT(*) FROM students;
+----------+
| COUNT(*) |
+----------+
| 4 |
+----------+
1 row in set (0.00 sec)
-- 使用表达式做统计
SELECT COUNT(1) FROM students;
+----------+
| COUNT(1) |
+----------+
| 4 |
+----------+
1 row in set (0.00 sec)
6.6.2、统计班级收集的 qq 号有多少
-- NULL 不会计入结果
SELECT COUNT(qq) FROM students;
+-----------+
| COUNT(qq) |
+-----------+
| 1 |
+-----------+
1 row in set (0.00 sec)
6.6.3、统计本次考试的数学成绩分数个数
-- COUNT(math) 统计的是全部成绩
SELECT COUNT(math) FROM exam_result;
+---------------+
| COUNT(math) |
+---------------+
| 6 |
+---------------+
1 row in set (0.00 sec)
-- COUNT(DISTINCT math) 统计的是去重成绩数量
SELECT COUNT(DISTINCT math) FROM exam_result;
+------------------------+
| COUNT(DISTINCT math) |
+------------------------+
| 5 |
+------------------------+
1 row in set (0.00 sec)
6.6.4、统计数学成绩总分
SELECT SUM(math) FROM exam_result;
+-------------+
| SUM(math) |
+-------------+
| 569 |
+-------------+
1 row in set (0.00 sec)
-- 不及格 < 60 的总分,没有结果,返回 NULL
SELECT SUM(math) FROM exam_result WHERE math < 60;
+-------------+
| SUM(math) |
+-------------+
| NULL |
+-------------+
1 row in set (0.00 sec)
6.6.5、统计平均总分
SELECT AVG(chinese + math + english) 平均总分 FROM exam_result;
+--------------+
| 平均总分 |
+--------------+
| 297.5 |
+--------------+
6.6.6、返回英语最高分
SELECT MAX(english) FROM exam_result;
+-------------+
| MAX(english)|
+-------------+
| 90 |
+-------------+
1 row in set (0.00 sec)
6.6.7、返回 > 70 分以上的数学最低分
SELECT MIN(math) FROM exam_result WHERE math > 70;
+-------------+
| MIN(math) |
+-------------+
| 73 |
+-------------+
1 row in set (0.00 sec)
6.7、group by子句的使用
在select中使用group by 子句可以对指定列进行分组查询;
select column1, column2, .. from table group by column;
案例:
- 准备工作,创建一个雇员信息表(来自oracle 9i的经典测试表);
- EMP员工表
- DEPT部门表
- SALGRADE工资等级表
- 如何显示每个部门的平均工资和最高工资;
select deptno,avg(sal),max(sal) from EMP group by deptno;
- 显示每个部门的每种岗位的平均工资和最低工资;
select avg(sal),min(sal),job, deptno from EMP group by deptno, job;
- 显示平均工资低于2000的部门和它的平均工资;
1. 统计各个部门的平均工资
select avg(sal) from EMP group by deptno
2. having和group by配合使用,对group by结果进行过滤
select avg(sal) as myavg from EMP group by deptno having myavg<2000;
--having经常和group by搭配使用,作用是对分组进行筛选,作用有些像where;
6.8、实战OJ
- 实战OJ 牛客:批量插入数据
- 牛客:找出所有员工当前(to_date='9999-01-01')具体的薪水salary情况,对于相同的薪水只显示一次,并按照逆序显示
- 牛客:查找最晚入职员工的所有信息
- 牛客:查找入职员工时间排名倒数第三的员工所有信息
- 牛客:查找薪水涨幅超过15次的员工号emp_no以及其对应的涨幅次数t
- 牛客:获取所有部门当前manager的当前薪水情况,给出dept_no, emp_no以及salary,当前表示 to_date='9999-01-01'
- 牛客:从titles表获取按照title进行分组,每组个数大于等于2,给出title以及对应的数目t
- leetcode: duplicate-emails
- leetcode: big-countries
- leetcode: nth-highest-salary
SQL查询中各个关键字的执行先后顺序 from > on> join > where > group by > with > having > select > distinct > order by > limit;
7、函数
7.1、日期函数
- 获得年月日:
select current_date();
+----------------+
| current_date() |
+----------------+
| 2017-11-19 |
+----------------+
- 获得时分秒:
select current_time();
+----------------+
| current_time() |
+----------------+
| 13:51:21 |
+----------------+
- 获得时间戳:
select current_timestamp();
+---------------------+
| current_timestamp() |
+---------------------+
| 2017-11-19 13:51:48 |
+---------------------+
- 在日期的基础上加日期:
select date_add('2017-10-28', interval 10 day);
+-----------------------------------------+
| date_add('2017-10-28', interval 10 day) |
+-----------------------------------------+
| 2017-11-07 |
+-----------------------------------------+
- 在日期的基础上减去时间:
select date_sub('2017-10-1', interval 2 day);
+---------------------------------------+
| date_sub('2017-10-1', interval 2 day) |
+---------------------------------------+
| 2017-09-29 |
+---------------------------------------+
- 计算两个日期之间相差多少天:
select datediff('2017-10-10', '2016-9-1');
+------------------------------------+
| datediff('2017-10-10', '2016-9-1') |
+------------------------------------+
| 404 |
+------------------------------------+
案例-1:
- 创建一张表,记录生日
create table tmp(
id int primary key auto_increment,
birthday date
);
- 添加当前日期:
insert into tmp(birthday) values(current_date());
mysql> select * from tmp;
+----+------------+
| id | birthday |
+----+------------+
| 1 | 2017-11-19 |
+----+------------+
案例-2:
- 创建一个留言表
mysql> create table msg (
-> id int primary key auto_increment,
-> content varchar(30) not null,
-> sendtime datetime
-> );
- 插入数据
mysql> insert into msg(content,sendtime) values('hello1', now());
mysql> insert into msg(content,sendtime) values('hello2', now());
mysql> select * from msg;
+----+---------+---------------------+
| id | content | sendtime |
+----+---------+---------------------+
| 1 | hello1 | 2017-11-19 14:12:20 |
| 2 | hello2 | 2017-11-19 14:13:21 |
+----+---------+---------------------+
- 显示所有留言信息,发布日期只显示日期,不用显示时间
select content,date(sendtime) from msg;
- 请查询在2分钟内发布的帖子
select * from msg where date_add(sendtime, interval 2 minute) > now();
7.2、字符串函数
案例:
- 获取emp表的ename列的字符集
select charset(ename) from EMP;
- 要求显示student表中的信息,显示格式:“XXX的语文是XXX分,数学XXX分,英语XXX分”
select concat(name, '的语文是',chinese,'分,数学是',math,'分') as '分数' from student;
- 求学生表中学生姓名占用的字节数
select length(name), name from student;
注意:length函数返回字符串长度,以字节为单位。如果是多字节字符则计算多个字节数;如果是单字 节字符则算作一个字节。比如:字母,数组算作一个字节,中文表示多个字节数(与字符集编码有关)
- 将EMP表中所有名字中有S的替换成'上海'
select replace(ename, 'S', '上海') ,ename from EMP;
- 截取EMP表中ename字段的第二个到第三个字符
select substring(ename, 2, 2), ename from EMP;
- 以首字母小写的方式显示所有员工的姓名
select concat(lcase(substring(ename, 1, 1)),substring(ename,2)) from EMP;
7.3、数学函数
- 绝对值
select abs(-100.2);
- 向下取整
select floor(23.7);
- 保留2位小数位数(小数四舍五入)
select format(12.3456, 2);
- 产生随机数
select rand();
7.4、其它函数
- user() 查询当前用户
select user();
- md5(str)对一个字符串进行md5摘要,摘要后得到一个32位字符串
select md5('admin')
+----------------------------------+
| md5('admin') |
+----------------------------------+
| 21232f297a57a5a743894a0e4a801fc3 |
+----------------------------------+
- database()显示当前正在使用的数据库
select database();
- password()函数,MySQL数据库使用该函数对用户加密
select password('root');
+-------------------------------------------+
| password('root') |
+-------------------------------------------+
| *81F5E21E35407D884A6CD4A731AEBFB6AF209E1B |
+-------------------------------------------+
- ifnull(val1, val2) 如果val1为null,返回val2,否则返回val1的值
select ifnull('abc', '123');
+----------------------+
| ifnull('abc', '123') |
+----------------------+
| abc |
+----------------------+
1 row in set (0.01 sec)
select ifnull(null, '123');
+---------------------+
| ifnull(null, '123') |
+---------------------+
| 123 |
+---------------------+
1 row in set (0.00 sec)
7.5、实战OJ
8、复合查询
前面我们讲解的mysql表的查询都是对一张表进行查询,在实际开发中这远远不够;
8.1、基本查询回顾
- 查询工资高于500或岗位为MANAGER的雇员,同时还要满足他们的姓名首字母为大写的J;
select * from EMP where (sal>500 or job='MANAGER') and ename like 'J%';
- 按照部门号升序而雇员的工资降序排序;
select * from EMP order by deptno, sal desc;
- 使用年薪进行降序排序;
select ename, sal*12+ifnull(comm,0) as '年薪' from EMP order by 年薪 desc;
- 显示工资最高的员工的名字和工作岗位;
select ename, job from EMP where sal = (select max(sal) from EMP);
- 显示工资高于平均工资的员工信息;
select ename, sal from EMP where sal>(select avg(sal) from EMP);
- 显示每个部门的平均工资和最高工资;
select deptno, format(avg(sal), 2) , max(sal) from EMP group by deptno;
- 显示平均工资低于2000的部门号和它的平均工资;
select deptno, avg(sal) as avg_sal from EMP group by deptno having avg_sal<2000;
- 显示每种岗位的雇员总数,平均工资;
select job,count(*), format(avg(sal),2) from EMP group by job;
8.2、多表查询
实际开发中往往数据来自不同的表,所以需要多表查询。本节我们用一个简单的公司管理系统,有三张表 EMP,DEPT,SALGRADE来演示如何进行多表查询;
案例:
- 显示雇员名、雇员工资以及所在部门的名字因为上面的数据来自EMP和DEPT表,因此要联合查询
其实我们只要emp表中的deptno = dept表中的deptno字段的记录;
select EMP.ename, EMP.sal, DEPT.dname from EMP, DEPT where EMP.deptno = DEPT.deptno;
- 显示部门号为10的部门名,员工名和工资;
select ename, sal,dname from EMP, DEPT where EMP.deptno=DEPT.deptno and DEPT.deptno =
10;
- 显示各个员工的姓名,工资,及工资级别
select ename, sal, grade from EMP, SALGRADE where EMP.sal between losal and hisal;
8.3、自连接
自连接是指在同一张表连接查询
案例:
显示员工FORD的上级领导的编号和姓名(mgr是员工领导的编号--empno)
- 使用的子查询:
select empno,ename from emp where emp.empno=(select mgr from emp where ename='FORD');
- 使用多表查询(自查询):
-- 使用到表的别名
--from emp leader, emp worker,给自己的表起别名,因为要先做笛卡尔积,所以别名可以先识别
select leader.empno,leader.ename from emp leader, emp worker where leader.empno =
worker.mgr and worker.ename='FORD';
8.4、子查询
子查询是指嵌入在其他sql语句中的select语句,也叫嵌套查询
8.4.1、单行子查询
返回一行记录的子查询
- 显示SMITH同一部门的员工
select * from EMP WHERE deptno = (select deptno from EMP where ename='smith');
8.4.2、多行子查询
返回多行记录的子查询
- in关键字;查询和10号部门的工作岗位相同的雇员的名字,岗位,工资,部门号,但是不包含10自己的;
select ename,job,sal,deptno from emp where job in (select distinct job from emp where
deptno=10) and deptno<>10;
- all关键字;显示工资比部门30的所有员工的工资高的员工的姓名、工资和部门号;
select ename, sal, deptno from EMP where sal > all(select sal from EMP where
deptno=30);
- any关键字;显示工资比部门30的任意员工的工资高的员工的姓名、工资和部门号(包含自己部门的员工)
select ename, sal, deptno from EMP where sal > any(select sal from EMP where
deptno=30);
8.4.3、多列子查询
单行子查询是指子查询只返回单列,单行数据;多行子查询是指返回单列多行数据,都是针对单列而言的,而多列子 查询则是指查询返回多个列数据的子查询语句;
案例:查询和SMITH的部门和岗位完全相同的所有雇员,不含SMITH本人;
mysql> select ename from EMP where (deptno, job)=(select deptno, job from EMP where
ename='SMITH') and ename <> 'SMITH';
+-------+
| ename |
+-------+
| ADAMS |
+-------+
8.4.4、在from子句中使用子查询
子查询语句出现在from子句中。这里要用到数据查询的技巧,把一个子查询当做一个临时表使用;
案例:
- 显示每个高于自己部门平均工资的员工的姓名、部门、工资、平均工资
//获取各个部门的平均工资,将其看作临时表
select ename, deptno, sal, format(asal,2) from EMP,
(select avg(sal) asal, deptno dt from EMP group by deptno) tmp
where EMP.sal > tmp.asal and EMP.deptno=tmp.dt;
- 查找每个部门工资最高的人的姓名、工资、部门、最高工资
select EMP.ename, EMP.sal, EMP.deptno, ms from EMP,
(select max(sal) ms, deptno from EMP group by deptno) tmp
where EMP.deptno=tmp.deptno and EMP.sal=tmp.ms;
- 显示每个部门的信息(部门名,编号,地址)和人员数量
方法1:使用多表
select DEPT.dname, DEPT.deptno, DEPT.loc,count(*) '部门人数' from EMP, DEPT
where EMP.deptno=DEPT.deptno
group by DEPT.deptno,DEPT.dname,DEPT.loc;
方法2:使用子查询
-- 1. 对EMP表进行人员统计
select count(*), deptno from EMP group by deptno;
-- 2. 将上面的表看作临时表
select DEPT.deptno, dname, mycnt, loc from DEPT,
(select count(*) mycnt, deptno from EMP group by deptno) tmp
where DEPT.deptno=tmp.deptno;
8.4.5、合并查询
在实际应用中,为了合并多个select的执行结果,可以使用集合操作符 union,union all;
8.4.5.1、union
该操作符用于取得两个结果集的并集。当使用该操作符时,会自动去掉结果集中的重复行;
案例:将工资大于2500或职位是MANAGER的人找出来
mysql> select ename, sal, job from EMP where sal>2500 union
-> select ename, sal, job from EMP where job='MANAGER';--去掉了重复记录
+-------+---------+-----------+
| ename | sal | job |
+-------+---------+-----------+
| JONES | 2975.00 | MANAGER |
| BLAKE | 2850.00 | MANAGER |
| SCOTT | 3000.00 | ANALYST |
| KING | 5000.00 | PRESIDENT |
| FORD | 3000.00 | ANALYST |
| CLARK | 2450.00 | MANAGER |
+-------+---------+-----------+
8.4.5.3、union all
该操作符用于取得两个结果集的并集。当使用该操作符时,不会去掉结果集中的重复行;
案例:将工资大于25000或职位是MANAGER的人找出来
mysql> select ename, sal, job from EMP where sal>2500 union all
-> select ename, sal, job from EMP where job='MANAGER';
+-------+---------+-----------+
| ename | sal | job |
+-------+---------+-----------+
| JONES | 2975.00 | MANAGER |
| BLAKE | 2850.00 | MANAGER |
| SCOTT | 3000.00 | ANALYST |
| KING | 5000.00 | PRESIDENT |
| FORD | 3000.00 | ANALYST |
| JONES | 2975.00 | MANAGER |
| BLAKE | 2850.00 | MANAGER |
| CLARK | 2450.00 | MANAGER |
+-------+---------+-----------+
8.5、实战OJ
- 牛客:查找所有员工入职时候的薪水情况,给出emp_no以及salary, 并按照emp_no进行逆序;
- 牛客:针对库中的所有表生成select count(*) from tableName 对应的SQL语句;
- 牛客:获取所有非manager的员工emp_no;
- 牛客:获取所有员工当前的manager,获取所有员工当前的manager,如果当前的manager是自己的话结果不显 示,当前表示to_date='9999-01-01'
9、表的内连和外连
表的连接分为内连和外连;
9.1、内连接
内连接实际上就是利用where子句对两种表形成的笛卡儿积进行筛选,我们前面学习的查询都是内连接,也是在开 发过程中使用的最多的连接查询;
语法:
select 字段 from 表1 inner join 表2 on 连接条件 and 其他条件;
备注:前面学习的都是内连接
案例:显示SMITH的名字和部门名称
-- 用前面的写法
select ename, dname from EMP, DEPT where EMP.deptno=DEPT.deptno and ename='SMITH';
-- 用标准的内连接写法
select ename, dname from EMP inner join DEPT on EMP.deptno=DEPT.deptno and
ename='SMITH';
9.2、外连接
外连接分为左外连接和右外连接
9.2.1、左外连接
如果联合查询,左侧的表完全显示我们就说是左外连接;
语法:
select 字段名 from 表名1 left join 表名2 on 连接条件
案例:
-- 建两张表
create table stu (id int, name varchar(30)); -- 学生表
insert into stu values(1,'jack'),(2,'tom'),(3,'kity'),(4,'nono');
create table exam (id int, grade int); -- 成绩表
insert into exam values(1, 56),(2,76),(11, 8);
- 查询所有学生的成绩,如果这个学生没有成绩,也要将学生的个人信息显示出来;
-- 当左边表和右边表没有匹配时,也会显示左边表的数据
select * from stu left join exam on stu.id=exam.id;
9.2.2、右外连接
如果联合查询,右侧的表完全显示我们就说是右外连接;
语法:
select 字段 from 表名1 right join 表名2 on 连接条件;
案例:
- 对stu表和exam表联合查询,把所有的成绩都显示出来,即使这个成绩没有学生与它对应,也要显示出来;
select * from stu right join exam on stu.id=exam.id;
练习:
- 列出部门名称和这些部门的员工信息,同时列出没有员工的部门
方法一:
select d.dname, e.* from dept d left join emp e on d.deptno=e.deptno;
方法二:
select d.dname, e.* from emp e right join dept d on d.deptno=e.deptno;
9.3、实战OJ
10、索引
10.1、没有索引,可能会有什么问题
索引:提高数据库的性能,索引是物美价廉的东西了。不用加内存,不用改程序,不用调sql,只要执行正确的 create index ,查询速度就可能提高成百上千倍。但是天下没有免费的午餐,查询速度的提高是以插入、更新、删 除的速度为代价的,这些写操作,增加了大量的IO。所以它的价值,在于提高一个海量数据的检索速度;
常见索引分为:
- 主键索引(primary key)
- 唯一索引(unique)
- 普通索引(index)
- 全文索引(fulltext)--解决中子文索引问题
案例:
先整一个海量表,在查询的时候,看看没有索引时有什么问题?
--构建一个8000000条记录的数据
--构建的海量表数据需要有差异性,所以使用存储过程来创建, 拷贝下面代码就可以了,暂时不用理解
-- 产生随机字符串
delimiter $$
create function rand_string(n INT)
returns varchar(255)
begin
declare chars_str varchar(100) default
'abcdefghijklmnopqrstuvwxyzABCDEFJHIJKLMNOPQRSTUVWXYZ';
declare return_str varchar(255) default '';
declare i int default 0;
while i < n do
set return_str =concat(return_str,substring(chars_str,floor(1+rand()*52),1));
set i = i + 1;
end while;
return return_str;
end $$
delimiter ;
--产生随机数字
delimiter $$
create function rand_num()
returns int(5)
begin
declare i int default 0;
set i = floor(10+rand()*500);
return i;
end $$
delimiter ;
--创建存储过程,向雇员表添加海量数据
delimiter $$
create procedure insert_emp(in start int(10),in max_num int(10))
begin
declare i int default 0;
set autocommit = 0;
repeat
set i = i + 1;
insert into EMP values ((start+i)
,rand_string(6),'SALESMAN',0001,curdate(),2000,400,rand_num());
until i = max_num
end repeat;
commit;
end $$
delimiter ;
-- 执行存储过程,添加8000000条记录
call insert_emp(100001, 8000000);
到此,已经创建出了海量数据的表了;
- 查询员工编号为998877的员工
select * from EMP where empno=998877;
可以看到耗时4.93秒,这还是在本机一个人来操作,在实际项目中,如果放在公网中,假如同时有1000个人并 发查询,那很可能就死机;
- 解决方法,创建索引
alter table EMP add index(empno);
- 换一个员工编号,测试看看查询时间
select * from EMP where empno=123456;
10.2、认识磁盘
MySQL与存储
MySQL 给用户提供存储服务,而存储的都是数据,数据在磁盘这个外设当中。磁盘是计算机中的一个机械设备,相 比于计算机其他电子元件,磁盘效率是比较低的,在加上IO本身的特征,可以知道,如何提交效率,是 MySQL 的一 个重要话题;
先来研究一下磁盘:
在看看磁盘中一个盘片:
扇区
数据库文件,本质其实就是保存在磁盘的盘片当中。也就是上面的一个个小格子中,就是我们经常所说的扇区。当 然,数据库文件很大,也很多,一定需要占据多个扇区;
题外话:
- 从上图可以看出来,在半径方向上,距离圆心越近,扇区越小,距离圆心越远,扇区越大;
- 那么,所有扇区都是默认512字节吗?目前是的,我们也这样认为。因为保证一个扇区多大,是由比特位密度决定的;
- 不过最新的磁盘技术,已经慢慢的让扇区大小不同了,不过我们现在暂时不考虑;
我们在使用Linux,所看到的大部分目录或者文件,其实就是保存在硬盘当中的。(当然,有一些内存文件系统,如: proc , sys 之类,我们不考虑)
#数据库文件,本质其实就是保存在磁盘的盘片当中,就是一个一个的文件
[root@VM-0-3-centos ~]# ls /var/lib/mysql -l #我们目前MySQL中的文件
total 319592
drwxr-x--- 2 mysql mysql 4096 Apr 15 21:46 57test
-rw-r----- 1 mysql mysql 56 Apr 12 15:27 auto.cnf
drwxr-x--- 2 mysql mysql 4096 May 17 13:52 bit_index
-rw------- 1 mysql mysql 1676 Apr 12 15:27 ca-key.pem
-rw-r--r-- 1 mysql mysql 1112 Apr 12 15:27 ca.pem
drwx------ 2 mysql mysql 4096 Apr 13 21:26 ccdata_pro
-rw-r--r-- 1 mysql mysql 1112 Apr 12 15:27 client-cert.pem
-rw------- 1 mysql mysql 1680 Apr 12 15:27 client-key.pem
-rw-r----- 1 mysql mysql 16958 Jun 8 15:46 ib_buffer_pool
-rw-r----- 1 mysql mysql 213909504 Jun 8 16:02 ibdata1
-rw-r----- 1 mysql mysql 50331648 Jun 8 16:02 ib_logfile0
-rw-r----- 1 mysql mysql 50331648 Jun 8 16:02 ib_logfile1
-rw-r----- 1 mysql mysql 12582912 Jun 8 15:46 ibtmp1
drwxr-x--- 2 mysql mysql 4096 Apr 28 14:11 musicserver
drwxr-x--- 2 mysql mysql 4096 May 9 09:47 mysql
srwxrwxrwx 1 mysql mysql 0 Jun 8 15:46 mysql.sock
-rw------- 1 mysql mysql 5 Jun 8 15:46 mysql.sock.lock
drwxr-x--- 2 mysql mysql 4096 Apr 12 15:27 performance_schema
-rw------- 1 mysql mysql 1676 Apr 12 15:27 private_key.pem
-rw-r--r-- 1 mysql mysql 452 Apr 12 15:27 public_key.pem
drwxr-x--- 2 mysql mysql 4096 May 9 09:46 scott
-rw-r--r-- 1 mysql mysql 1112 Apr 12 15:27 server-cert.pem
-rw------- 1 mysql mysql 1676 Apr 12 15:27 server-key.pem
drwxr-x--- 2 mysql mysql 12288 Apr 12 15:27 sys
drwxr-x--- 2 mysql mysql 4096 Jun 5 17:13 test # 自己定义的数据库,里面有数据表
所以,最基本的,找到一个文件的全部,本质,就是在磁盘找到所有保存文件的扇区;
而我们能够定位任何一个扇区,那么便能找到所有扇区,因为查找方式是一样的;
定位扇区
- 柱面(磁道): 多盘磁盘,每盘都是双面,大小完全相等。那么同半径的磁道,整体上便构成了一个柱面;
- 每个盘面都有一个磁头,那么磁头和盘面的对应关系便是1对1的;
- 所以,我们只需要知道,磁头(Heads)、柱面(Cylinder)(等价于磁道)、扇区(Sector)对应的编号。即可在磁盘 上定位所要访问的扇区。这种磁盘数据定位方式叫做 CHS 。不过实际系统软件使用的并不是 CHS (但是硬件 是),而是 LBA ,一种线性地址,可以想象成虚拟地址与物理地址。系统将 LBA 地址最后会转化成为 CHS ,交 给磁盘去进行数据读取。不过,我们现在不关心转化细节,知道这个东西,让我们逻辑自洽起来即可;
结论
我们现在已经能够在硬件层面定位,任何一个基本数据块了(扇区)。那么在系统软件上,就直接按照扇区(512字节, 部分4096字节),进行IO交互吗?不是
- 如果操作系统直接使用硬件提供的数据大小进行交互,那么系统的IO代码,就和硬件强相关,换言之,如果硬 件发生变化,系统必须跟着变化;
- 从目前来看,单次IO 512字节,还是太小了。IO单位小,意味着读取同样的数据内容,需要进行多次磁盘访 问,会带来效率的降低;
- 之前学习文件系统,就是在磁盘的基本结构下建立的,文件系统读取基本单位,就不是扇区,而是数据块;
磁盘随机访问(Random Access)与连续访问(Sequential Access)
随机访问:本次IO所给出的扇区地址和上次IO给出扇区地址不连续,这样的话磁头在两次IO操作之间需要作比较大 的移动动作才能重新开始读/写数据;
连续访问:如果当次IO给出的扇区地址与上次IO结束的扇区地址是连续的,那磁头就能很快的开始这次IO操作,这 样的多个IO操作称为连续访问;
因此尽管相邻的两次IO操作在同一时刻发出,但如果它们的请求的扇区地址相差很大的话也只能称为随机访问,而非连续访问;
磁盘是通过机械运动进行寻址的,随机访问不需要过多的定位,故效率比较高;
10.3、MySQL 与磁盘交互基本单位
而 MySQL 作为一款应用软件,可以想象成一种特殊的文件系统。它有着更高的IO场景,所以,为了提高基本的IO效 率, MySQL 进行IO的基本单位是 16KB (后面统一使用 InnoDB 存储引擎讲解);
mysql> SHOW GLOBAL STATUS LIKE 'innodb_page_size';
+------------------+-------+
| Variable_name | Value |
+------------------+-------+
| Innodb_page_size | 16384 | -- 16*1024=16384
+------------------+-------+
1 row in set (0.01 sec)
也就是说,磁盘这个硬件设备的基本单位是 512 字节,而 MySQL InnoDB引擎 使用 16KB 进行IO交互。即, MySQL 和 磁盘进行数据交互的基本单位是 16KB 。这个基本数据单元,在 MySQL 这里叫做page(注意和系统的page区分);
10.4、建立共识
- MySQL 中的数据文件,是以page为单位保存在磁盘当中的;
- MySQL 的 CURD 操作,都需要通过计算,找到对应的插入位置,或者找到对应要修改或者查询的数据;
- 而只要涉及计算,就需要CPU参与,而为了便于CPU参与,一定要能够先将数据移动到内存当中;
- 所以在特定时间内,数据一定是磁盘中有,内存中也有。后续操作完内存数据之后,以特定的刷新策略,刷新 到磁盘。而这时,就涉及到磁盘和内存的数据交互,也就是IO了。而此时IO的基本单位就是Page;
- 为了更好的进行上面的操作, MySQL 服务器在内存中运行的时候,在服务器内部,就申请了被称为 Buffer Pool 的的大内存空间,来进行各种缓存。其实就是很大的内存空间,来和磁盘数据进行IO交互;
- 为何更高的效率,一定要尽可能的减少系统和磁盘IO的次数;
10.5、索引的理解
建立测试表
create table if not exists user (
id int primary key, --一定要添加主键哦,只有这样才会默认生成主键索引
age int not null,
name varchar(16) not null
);
mysql> show create table user \G
*************************** 1. row ***************************
Table: user
Create Table: CREATE TABLE `user` (
`id` int(11) NOT NULL,
`age` int(11) NOT NULL,
`name` varchar(16) NOT NULL,
PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 --默认就是InnoDB存储引擎
1 row in set (0.00 sec)
插入多条记录
--插入多条记录,注意,我们并没有按照主键的大小顺序插入哦
mysql> insert into user (id, age, name) values(3, 18, '杨过');
Query OK, 1 row affected (0.01 sec)
mysql> insert into user (id, age, name) values(4, 16, '小龙女');
Query OK, 1 row affected (0.00 sec)
mysql> insert into user (id, age, name) values(2, 26, '黄蓉');
Query OK, 1 row affected (0.01 sec)
mysql> insert into user (id, age, name) values(5, 36, '郭靖');
Query OK, 1 row affected (0.00 sec)
mysql> insert into user (id, age, name) values(1, 56, '欧阳锋');
Query OK, 1 row affected (0.00 sec)
查看插入结果
mysql> select * from user; --发现竟然默认是有序的!是谁干的呢?排序有什么好处呢?
+----+-----+-----------+
| id | age | name |
+----+-----+-----------+
| 1 | 56 | 欧阳锋 |
| 2 | 26 | 黄蓉 |
| 3 | 18 | 杨过 |
| 4 | 16 | 小龙女 |
| 5 | 36 | 郭靖 |
+----+-----+-----------+
5 rows in set (0.00 sec)
中断一下---为何IO交互要是 Page
为何MySQL和磁盘进行IO交互的时候,要采用Page的方案进行交互呢?用多少,加载多少不香吗?
如上面的5条记录,如果MySQL要查找id=2的记录,第一次加载id=1,第二次加载id=2,一次一条记录,那么就需要2次IO;
如果要找id=5,那么就需要5次IO。
但,如果这5条(或者更多)都被保存在一个Page中(16KB,能保存很多记录),那么第一次IO查找id=2的时候,整个Page会被加载到MySQL的Buffer Pool中,这里完成了一次IO。但是往后如果在查找id=1,3,4,5等,完全不需要进行IO了,而是直接在内存中进行了。所以,就在单Page里面,大大减少了IO的次数;
你怎么保证,用户一定下次找的数据,就在这个Page里面?我们不能严格保证,但是有很大概率,因为有局部性原理;
往往IO效率低下的最主要矛盾不是IO单次数据量的大小,而是IO的次数;
理解单个Page
MySQL 中要管理很多数据表文件,而要管理好这些文件,就需要 先描述,在组织 ,我们目前可以简单理解成一个个独 立文件是有一个或者多个Page构成的;
不同的 Page ,在 MySQL 中,都是 16KB ,使用 prev 和 next 构成双向链表;
因为有主键的问题, MySQL 会默认按照主键给我们的数据进行排序,从上面的Page内数据记录可以看出,数据是有 序且彼此关联的;
为什么数据库在插入数据时要对其进行排序呢?我们按正常顺序插入数据不是也挺好的吗?
插入数据时排序的目的,就是优化查询的效率;
页内部存放数据的模块,实质上也是一个链表的结构,链表的特点也就是增删快,查询修改慢,所以优化查询的效率是必须的;
正式因为有序,在查找的时候,从头到后都是有效查找,没有任何一个查找是浪费的,而且,如果运气好,是可以提前结束查找过程的;
理解多个Page
- 通过上面的分析,我们知道,上面页模式中,只有一个功能,就是在查询某条数据的时候直接将一整页的数据 加载到内存中,以减少硬盘IO次数,从而提高性能。但是,我们也可以看到,现在的页模式内部,实际上是采 用了链表的结构,前一条数据指向后一条数据,本质上还是通过数据的逐条比较来取出特定的数据;
- 如果有1千万条数据,一定需要多个Page来保存1千万条数据,多个Page彼此使用双链表链接起来,而且每个 Page内部的数据也是基于链表的。那么,查找特定一条记录,也一定是线性查找。这效率也太低了;
页目录
我们在看本书的时候,如果我们要看,找到该章节有两种做法
- 从头逐页的向后翻,直到找到目标内容;
- 通过书提供的目录,发现指针章节在234页(假设),那么我们便直接翻到234页。同时,查找目录的方案,可以 顺序找,不过因为目录肯定少,所以可以快速提高定位;
- 本质上,书中的目录,是多花了纸张的,但是却提高了效率;
- 所以,目录,是一种“空间换时间的做法”;
单页情况
针对上面的单页Page,我们能否也引入目录呢?当然可以
那么当前,在一个Page内部,我们引入了目录。比如,我们要查找id=4记录,之前必须线性遍历4次,才能拿到结 果。现在直接通过目录2[3],直接进行定位新的起始位置,提高了效率。现在我们可以再次正式回答上面的问题了, 为何通过键值 MySQL 会自动排序?
- 可以很方便引入目录
多页情况
MySQL 中每一页的大小只有 16KB ,单个Page大小固定,所以随着数据量不断增大, 16KB 不可能存下所有的数据, 那么必定会有多个页来存储数据;
在单表数据不断被插入的情况下, MySQL 会在容量不足的时候,自动开辟新的Page来保存新的数据,然后通过指针 的方式,将所有的Page组织起来;
需要注意,上面的图,是理想结构,大家也知道,目前要保证整体有序,那么新插入的数据,不一定会在新Page上 面,这里仅仅做演示;
这样,我们就可以通过多个Page遍历,Page内部通过目录来快速定位数据。可是,貌似这样也有效率问题,在Page 之间,也是需要 MySQL 遍历的,遍历意味着依旧需要进行大量的IO,将下一个Page加载到内存,进行线性检测。这 样就显得我们之前的Page内部的目录,有点杯水车薪了;
那么如何解决呢?解决方案,其实就是我们之前的思路,给Page也带上目录;
- 使用一个目录项来指向某一页,而这个目录项存放的就是将要指向的页中存放的最小数据的键值;
- 和页内目录不同的地方在于,这种目录管理的级别是页,而页内目录管理的级别是行;
- 其中,每个目录项的构成是:键值+指针。图中没有画全;
存在一个目录页来管理页目录,目录页中的数据存放的就是指向的那一页中最小的数据。有数据,就可通过比较,找 到该访问那个Page,进而通过指针,找到下一个Page;
其实目录页的本质也是页,普通页中存的数据是用户数据,而目录页中存的数据是普通页的地址;
可是,我们每次检索数据的时候,该从哪里开始呢?虽然顶层的目录页少了,但是还要遍历啊?不用担心,可以在加目录页:
就是的B+树没错,至此,我们已经给我们的表user构建完了主键索引;
随便找一个id=?我们发现,现在查找的Page数一定减少了,也就意味着IO次数减少了,那么效率也就提高了;
复盘一下
- Page分为目录页和数据页。目录页只放各个下级Page的最小键值;
- 查找的时候,自定向下找,只需要加载部分目录页到内存,即可完成算法的整个查找过程,大大减少了IO次数;
InnoDB 在建立索引结构来管理数据的时候,其他数据结构为何不行?
- 链表?线性遍历;
- 二叉搜索树?退化问题,可能退化成为线性结构;
- AVL &&红黑树?虽然是平衡或者近似平衡,但是毕竟是二叉结构,相比较多阶B+,意味着树整体过高,大家都 是自顶向下找,层高越低,意味着系统与硬盘更少的IO Page交互。虽然你很秀,但是有更秀的;
- Hash?官方的索引实现方式中, MySQL 是支持HASH的,不过 InnoDB 和 MyISAM 并不支持.Hash跟进其算法特 征,决定了虽然有时候也很快(O(1)),不过,在面对范围查找就明显不行,另外还有其他差别,有兴趣可以查一 下;
- B树?最值得比较的是 InnoDB 为何不用B树作为底层索引?
数据结构演示链接::https://www.cs.usfca.edu/~galles/visualization/Algorithms.html
B+ vs B
B树
B+树
目前这两棵树,对我们最有意义的区别是:
- B树节点,既有数据,又有Page指针,而B+,只有叶子节点有数据,其他目录页,只有键值和Page指针;
- B+叶子节点,全部相连,而B没有;
为何选择B+
- 节点不存储data,这样一个节点就可以存储更多的key。可以使得树更矮,所以IO操作次数更少;
- 叶子节点相连,更便于进行范围查找;
聚簇索引 VS 非聚簇索引
MyISAM 存储引擎-主键索引
MyISAM 引擎同样使用B+树作为索引结果,叶节点的data域存放的是数据记录的地址。下图为 MyISAM 表的主索引, Col1 为主键;
其中, MyISAM 最大的特点是,将索引Page和数据Page分离,也就是叶子节点没有数据,只有对应数据的地址。 相较于 InnoDB 索引, InnoDB 是将索引和数据放在一起的;
--终端A
mysql> create database myisam_test; --创建数据库
Query OK, 1 row affected (0.00 sec)
mysql> use myisam_test;
Database changed
mysql> create table mtest(
-> id int primary key,
-> name varchar(11) not null
-> )engine=MyISAM; --使用engine=MyISAM
Query OK, 0 rows affected (0.01 sec)
--终端B
[root@VM-0-3-centos mysql]# ls myisam_test/ -al --mysql数据目录下
total 28
drwxr-x--- 2 mysql mysql 4096 Jun 13 13:33 .
drwxr-x--x 13 mysql mysql 4096 Jun 13 13:32 ..
-rw-r----- 1 mysql mysql 61 Jun 13 13:32 db.opt
-rw-r----- 1 mysql mysql 8586 Jun 13 13:33 mtest.frm --表结构数据
-rw-r----- 1 mysql mysql 0 Jun 13 13:33 mtest.MYD --该表对应的数据,当前没有数据,所以是0
-rw-r----- 1 mysql mysql 1024 Jun 13 13:33 mtest.MYI --该表对应的主键索引数据
其中, MyISAM 这种用户数据与索引数据分离的索引方案,叫做非聚簇索引;
--终端A
mysql> create database innodb_test; --创建数据库
Query OK, 1 row affected (0.00 sec)
mysql> use innodb_test;
Database changed
mysql> create table itest(
-> id int primary key,
-> name varchar(11) not null
-> )engine=InnoDB; --使用engine=InnoDB
Query OK, 0 rows affected (0.02 sec)
--终端B
[root@VM-0-3-centos mysql]# ls innodb_test/ -al
total 120
drwxr-x--- 2 mysql mysql 4096 Jun 13 13:39 .
drwxr-x--x 14 mysql mysql 4096 Jun 13 13:38 ..
-rw-r----- 1 mysql mysql 61 Jun 13 13:38 db.opt
-rw-r----- 1 mysql mysql 8586 Jun 13 13:39 itest.frm --表结构数据
-rw-r----- 1 mysql mysql 98304 Jun 13 13:39 itest.ibd --该表对应的主键索引和用户数据,虽然现在
一行数据没有,但是该表并不为0,因为有主键索引数据
其中, InnoDB 这种用户数据与索引数据在一起索引方案,叫做聚簇索引;
当然, MySQL 除了默认会建立主键索引外,我们用户也有可能建立按照其他列信息建立的索引,一般这种索引可以 叫做辅助(普通)索引;
对于 MyISAM ,建立辅助(普通)索引和主键索引没有差别,无非就是主键不能重复,而非主键可重复;
下图就是基于 MyISAM 的 Col2 建立的索引,和主键索引没有差别;
同样, InnoDB 除了主键索引,用户也会建立辅助(普通)索引,我们以上表中的 Col3 建立对应的辅助索引如下图:
可以看到, InnoDB 的非主键索引中叶子节点并没有数据,而只有对应记录的key值;
所以通过辅助(普通)索引,找到目标记录,需要两遍索引:首先检索辅助索引获得主键,然后用主键到主索引中检 索获得记录。这种过程,就叫做回表查询;
为何 InnoDB 针对这种辅助(普通)索引的场景,不给叶子节点也附上数据呢?原因就是太浪费空间了;
总结:
- 如何理解硬盘
- 如何理解柱面,磁道,扇区,磁头
- InnoDB 主键索引和普通索引
- MyISAM 主键索引和普通索引
- 其他数据结构为何不能作为索引结构,尤其是B+和B
- 聚簇索引 VS 非聚簇索引
10.6、索引操作
创建主键索引
- 第一种方式:
-- 在创建表的时候,直接在字段名后指定 primary key
create table user1(id int primary key, name varchar(30));
- 第二种方式:
-- 在创建表的最后,指定某列或某几列为主键索引
create table user2(id int, name varchar(30), primary key(id));
- 第三种方式:
create table user3(id int, name varchar(30));
-- 创建表以后再添加主键
alter table user3 add primary key(id);
主键索引的特点:
- 一个表中,最多有一个主键索引,当然可以使符合主键
- 主键索引的效率高(主键不可重复)
- 创建主键索引的列,它的值不能为null,且不能重复
- 主键索引的列基本上是int
唯一索引的创建
- 第一种方式
-- 在表定义时,在某列后直接指定unique唯一属性。
create table user4(id int primary key, name varchar(30) unique);
- 第二种方式
-- 创建表时,在表的后面指定某列或某几列为unique
create table user5(id int primary key, name varchar(30), unique(name));
- 第三种方式
create table user6(id int primary key, name varchar(30));
alter table user6 add unique(name);
唯一索引的特点:
- 一个表中,可以有多个唯一索引
- 查询效率高
- 如果在某一列建立唯一索引,必须保证这列不能有重复数据
- 如果一个唯一索引上指定not null,等价于主键索引
普通索引的创建
- 第一种方式
create table user8(id int primary key,
name varchar(20),
email varchar(30),
index(name) --在表的定义最后,指定某列为索引
);
- 第二种方式
create table user9(id int primary key, name varchar(20), email varchar(30));
alter table user9 add index(name); --创建完表以后指定某列为普通索引
- 第三种方式
create table user10(id int primary key, name varchar(20), email varchar(30));
-- 创建一个索引名为 idx_name 的索引
create index idx_name on user10(name);
普通索引的特点:
- 一个表中可以有多个普通索引,普通索引在实际开发中用的比较多
- 如果某列需要创建索引,但是该列有重复的值,那么我们就应该使用普通索引
全文索引的创建
当对文章字段或有大量文字的字段进行检索时,会使用到全文索引。MySQL提供全文索引机制,但是有要求,要求 表的存储引擎必须是MyISAM,而且默认的全文索引支持英文,不支持中文。如果对中文进行全文检索,可以使用 sphinx的中文版(coreseek);
CREATE TABLE articles (
id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
title VARCHAR(200),
body TEXT,
FULLTEXT (title,body)
)engine=MyISAM;
INSERT INTO articles (title,body) VALUES
('MySQL Tutorial','DBMS stands for DataBase ...'),
('How To Use MySQL Well','After you went through a ...'),
('Optimizing MySQL','In this tutorial we will show ...'),
('1001 MySQL Tricks','1. Never run mysqld as root. 2. ...'),
('MySQL vs. YourSQL','In the following database comparison ...'),
('MySQL Security','When configured properly, MySQL ...');
- 查询有没有database数据
如果使用如下查询方式,虽然查询出数据,但是没有使用到全文索引
mysql> select * from articles where body like '%database%';
+----+-------------------+------------------------------------------+
| id | title | body |
+----+-------------------+------------------------------------------+
| 1 | MySQL Tutorial | DBMS stands for DataBase ... |
| 5 | MySQL vs. YourSQL | In the following database comparison ... |
+----+-------------------+------------------------------------------+
可以用explain工具看一下,是否使用到索引
mysql> explain select * from articles where body like '%database%'\G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: articles
type: ALL
possible_keys: NULL
key: NULL <== key为null表示没有用到索引
key_len: NULL
ref: NULL
rows: 6
Extra: Using where
1 row in set (0.00 sec)
- 如何使用全文索引呢?
mysql> SELECT * FROM articles
-> WHERE MATCH (title,body) AGAINST ('database');
+----+-------------------+------------------------------------------+
| id | title | body |
+----+-------------------+------------------------------------------+
| 5 | MySQL vs. YourSQL | In the following database comparison ... |
| 1 | MySQL Tutorial | DBMS stands for DataBase ... |
+----+-------------------+------------------------------------------+
通过explain来分析这个sql语句
mysql> explain SELECT * FROM articles WHERE MATCH (title,body) AGAINST ('database')\G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: articles
type: fulltext
possible_keys: title
key: title <= key用到了title
key_len: 0
ref:
rows: 1
Extra: Using where
查询索引
- 第一种方法: show keys from 表名
mysql> show keys from goods\G
*********** 1. row ***********
Table: goods <= 表名
Non_unique: 0 <= 0表示唯一索引
Key_name: PRIMARY <= 主键索引
Seq_in_index: 1
Column_name: goods_id <= 索引在哪列
Collation: A
Cardinality: 0
Sub_part: NULL
Packed: NULL
Null:
Index_type: BTREE <= 以二叉树形式的索引
Comment:
1 row in set (0.00 sec)
- 第二种方法: show index from 表名;
- 第三种方法(信息比较简略): desc 表名;
删除索引
- 第一种方法-删除主键索引: alter table 表名 drop primary key;
- 第二种方法-其他索引的删除: alter table 表名 drop index 索引名; 索引名就是show keys from 表名中的 Key_name 字段;
mysql> alter table user10 drop index idx_name;
- 第三种方法方法: drop index 索引名 on 表名
mysql> drop index name on user8;
索引创建原则
- 比较频繁作为查询条件的字段应该创建索引;
- 唯一性太差的字段不适合单独创建索引,即使频繁作为查询条件;
- 更新非常频繁的字段不适合作创建索引;
- 不会出现在where子句中的字段不该创建索引;
其他概念:
- 复合索引
- 索引最左匹配原则
- 索引覆盖