P3811 【模板】乘法逆元

题目

这是一道模板题

题目描述

给定 n , p 求 1 ∼ n n,p求 1\sim n n,p1n中所有整数在模 p p p 意义下的乘法逆元。

输入格式

一行两个正整数 n , p n,p n,p

输出格式

输出 n n n 行,第 i i i 行表示 i i i 在模 p p p 下的乘法逆元。

输入输出样例

输入
10 13
输出
1
7
9
10
8
11
2
5
3
4

说明/提示

1 ≤ n ≤ 3 × 1 0 6 , n < p < 20000528 1 \leq n \leq 3 \times 10 ^ 6, n < p < 20000528 1n3×106,n<p<20000528

输入保证 p p p 为质数。


题解

模板乘法逆元
可把刚打好的扩欧乘法逆元板子交上去结果发现 T 了,
看了眼题解才发现要用线性方法求逆元,因为题目要求1~n的逆元。


线性法要推导一个递推公式:
p = k ∗ i + r p=k*i+r p=ki+r
也就是说 p / i p/i p/i 的商为 k k k,余数为 r r r
∴ k = ⌊ p i ⌋ ,   r = p    m o d    i \therefore k=⌊ \frac{p}{i} ⌋, \ r=p\; mod\; i k=ip, r=pmodi


k ∗ i + r ≡ 0    ( m o d    p ) k*i+r\equiv0\ \ (mod\ \ p) ki+r0  (mod  p)

左右同乘 ( i − 1 ∗ r − 1 ) (i^{-1}*r^{-1}) (i1r1)                \;\;\;\;\;\;\; // x − 1 x^{-1} x1 表示 x 的逆元

得: k ∗ r − 1 + i − 1 ≡ 0    ( m o d    p ) k*r^{-1}+i^{-1}\equiv0\ \ (mod\ \ p) kr1+i10  (mod  p)

代入 k = ⌊ p i ⌋ ,   r = p    m o d    i k=⌊\frac{p}{i}⌋, \ r=p\; mod\; i k=ip, r=pmodi

得: ⌊ p i ⌋ ∗ ( p    m o d    i ) − 1 + i − 1 ≡ 0    ( m o d    p ) ⌊ \frac{p}{i}⌋*(p\; mod\; i)^{-1}+i^{-1}\equiv0\ \ (mod\ \ p) ip(pmodi)1+i10  (mod  p)

∴ i − 1 ≡ − ⌊ p i ⌋ ∗ ( p    m o d    i ) − 1    ( m o d    p ) \therefore i^{-1}\equiv-⌊ \frac{p}{i}⌋*(p\; mod\; i)^{-1}\ \ (mod\ \ p) i1ip(pmodi)1  (mod  p)

∴ i − 1    %    p = − ⌊ p i ⌋ ∗ ( p    %    i ) − 1    %    p \therefore i^{-1}\;\%\;p=-⌊ \frac{p}{i}⌋*(p\;\%\; i)^{-1}\;\%\;p i1%p=ip(p%i)1%p

∴ i − 1 = − ⌊ p i ⌋ ∗ ( p    %    i ) − 1    %    p            \therefore i^{-1}=-⌊ \frac{p}{i}⌋*(p\;\%\; i)^{-1}\;\%\;p\;\;\;\;\; i1=ip(p%i)1%p ( i 的逆元必小于 p,所以左边模 p可省掉)


所以我们便有了个递推式:

i n v [ i ] = − p / i ∗ i n v [ p   %    i ]    %    p inv[i]=-p/i*inv[p\ \%\;i]\;\%\; p inv[i]=p/iinv[p %i]%p


∵ p % p    等 于 0 \because p\%p\;等于0 p%p0

∴ i n v [ i ] = p − p / i ∗ i n v [ p   %    i ]    %    p                          加 上 p 答 案 不 变 \therefore inv[i]=p-p/i*inv[p\ \%\;i]\;\%\; p\;\;\;\;\;\;\;\;\;\;\;\;加上p答案不变 inv[i]=pp/iinv[p %i]%pp

这样就能保证 i n v [ i ] > 0 inv[i]>0 inv[i]>0


超级简洁的代码

#include<iostream>
using namespace std;
long long p,n,inv[10000001];
int main()
{
	scanf("%d%d",&n,&p);
	inv[1]=1; //初始化,1在所有意义下的逆元都为1
	for(int i=2; i<=n; i++) inv[i]=(-p/i)*inv[p%i]%p; //从2开始套式子递推
	for(int i=1; i<=n; i++) printf("%d\n",inv[i]); //最后输出
	return 0;
}
  • 4
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值