导航电子地图数据中POI搜索技术原理之四

本文介绍如何将不同来源的地图POI数据进行融合及排重处理,通过设定一定距离范围内的名称相似度来判断重复项,利用空间索引提高搜索效率,并采用字符串匹配算法解决名称差异问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

导航电子地图数据中POI搜索技术原理之四

海量POI数据融合

有这样的应用案例:某做地图应用的A公司,从地图数据提供商B、C公司分别购买了地图数据。一般而言,B、C公司有一些重复的POI数据,例如彼此都采集了北京大学这个POI,但同时,B、C公司各自有一些自己特有的POI数据。A公司希望能将B、C公司的POI数据融合到一起,得到更完善丰富的POI数据。

对于这样的应用,需要处理的问题,其实就是对B、C公司的POI数据,进行排重处理。本文将对POI排重处理,作一个简单的介绍。

处理的基本原理可以总结为:对于A公司的POI-A,考察在B公司的POI数据中,POI-A方圆500米内,是否有相同名字的POI-B。这里认为在500米内,没有两个相同名字的POI点。这里500米,作为可以调整的参数,具体视实验结果而定。

处理的难点有以下两个:

1 快速的在B公司的POI数据中,找到POI-A方圆500米内的POI。这里效率是个问题。

2 计算POI-A与POI-B的名称的相似程度。不同的地图数据提供商,对同一个POI的命名,可能会有微小的差异,通常很难完全一致。所以,不能仅仅靠POI-A与POI-B的名称,是否完全一致来判断。

问题1,可以通过空间索引来解决,这里空间索引,采用规则格网的方式,就可以解决问题。这里不具体讲了。

问题2,可以通过字符串匹配的算法解决。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值