金融监管之风险控制 金融监管的概念有广义和狭义之分。(1)狭义的金融监管仅指一国(地区或跨国)的中央银行或金融监督管理当局依据法律、法规的授权,对金融业实施的监督管理;(2)广义的金融监管除包括一国(地区或跨国)中央银行或金融监管当局对金融体系的法定监管之外,还包括各金融机构的内部控制、同业自律性组织的监管、社会中介组织的监管等。目前,各国的金融监管体系通常是在广义的范畴下架构的,同时具备监管主体、监管客体和监管工具三个基本要素。金融风险指经济主体的金融活动无法达到预期结果的可能性。划分标准类别根据风险范围。
基金合规条例 基金合规持有一家公司发行的证券,其市值不超过基金净资产净值的10%证券属性控制值并且 证券类别不等于 国债、政策性金融债、央行票据并且 原始权益人单独控制并且 证券风格库不等于 指数基金成分股A1*:各单只基金、专户股票持仓/总股本(≥4.9%禁止【证券法5%披露】)证券属性控制值并且 证券个股单独控制并且 证券类别股票、供股权益各单只基金可转债持仓/总股本 > 5%审批;> 10%禁止证券属性控制
【Mybatis】 什么是 Mybatis?Mybatis 是一个半 ORM(对象关系映射)框架,它内部封装了 JDBC,开发时只需要关注 SQL 语句本身,不需要花费精力去处理加载驱动、创建连接、创建statement 等繁杂的过程。程序员直接编写原生态 sql,可以严格控制 sql 执行性能,灵活度高MyBatis 可以使用 XML 或注解来配置和映射原生信息,将 POJO 映射成数据库中的记录,避免了几乎所有的 JDBC 代码和手动设置参数以及获取结果集通过xml文件或注解的方式将要执行的各种 statement
Chrome开发者工具之Application Chrome开发者工具系列Chrome开发者工具之Application文章目录Chrome开发者工具系列Application结构展示效果目录结构Local StorageSession StorageCookiesApplication结构展示效果目录结构该目录中的请求数据可能会有所不同,以实际请求数据为基准。Application - 应用Manifest - 清单Service Workers - 服务网络Storage - 存储Storage - 存储Loc
react结构 本文档适用于将风控前端搭载到qiankun框架上。qiankun 是一个基于 single-spa 的微前端实现库,旨在帮助大家能更简单、无痛的构建一个生产可用微前端架构系统。qiankun分为主应用和微应用两部分,因此将前端接入qiankun需在主应用和微应用中作相应的配置。第一步:在主应用中注册微应用(主应用一般由客户提供,如果需自行搭建参考安装qiankun);第二步:配置微应用,用于当浏览器url发生变化后,能够触发qiankun匹配逻辑。
从零开始学习前端开发 搭建React脚手架安装Yarn创建一个新的项目安装Yarn用npm安装yarn// 用npm安装yarnnpm install yarn -g切换淘宝源yarn config set registry https://registry.npm.taobao.org --globalyarn config set disturl https://npm.taobao.org/dist --globalyarn的一些常用命令,用于构建一个项目初始化:yarn init安装
tensorflow警告:Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX 参考:http://www.bubuko.com/infodetail-2586137.html大神的前两种方法就不采纳了,直接上第三种方法,个人感觉很好用。这个警告说你的Tensorflow不能使用SSE4.1 SSE4.2 AVX AVX2 FMA这些指令集进行编译WARNING:Your CPU supports instructions that this TensorFlow b...
基于Tensorflow的卷积神经网络模型实现水果分类识别(实践案例) 前言写这篇博客的目的,就是记录下实现Fruit Dataset Image Classification Network的过程,所以从头开始写。这里感谢下会飞的小咸鱼提供了思路,文章内容主要翻译自Kaggle平台的的Fruit Dataset Image Classification Network,数据集、原文都可以直接下载。实现过程将包含以下几个步骤为了提高读取效率,将数据集图像序列化...
tensorflow入门MNIST多版本实现 前言本文实现方法具体步骤可在tensflow中文查看,我把实现代码贴了出来,再做了一些修改。在修改过程中,我发现损失函数的写法不同,带来的精度相差很大,具体我会在下面给大家展示。Git下载地址版本1:精度87%左右版本2:精度91%左右版本3:版本2的强化版,使用 ‘with’ 代码块自动完成会话关闭操作版本1和版本2的交叉熵的写法略微不同,精度相差将近3%版本1交叉熵的写法#...
决策树算法(2) 案例实现 决策树算法(1) 算法原理决策树算法(2) 案例实现随机森林算法(3) 算法原理随机森林算法(4) 案例实现代码实现职业年龄收入学历是否贷款自由职业285000高中是工人365500高中否工人422800初中是白领453300小学是白领2510000本科是白领328000硕士否...
决策树算法(1) 算法原理 决策树算法(1) 算法原理决策树算法(2) 案例实现随机森林算法(3) 算法原理随机森林算法(4) 案例实现引言决策树算法的思想其实早就在我们的生活中被广泛运用了,只是没有将其抽象出来。举个简单的例子:相亲时,可能首先检测相亲对方是否有房。如果有,则考虑进一步接触。如果没有房,则观察其是否有上进心,如果没有,直接Say Goodbye。如果有,则可以列入候选名单。那么,怎么准确的选择...
朴素贝叶斯算法(2)案例实现 朴素贝叶斯算法(1)超详细的算法介绍朴素贝叶斯算法(2)案例实现引言关于朴素贝叶斯算法的推导过程在朴素贝叶斯算法(1)超详细的算法介绍中详细说明了,这一篇文章用几个案例来深入了解下贝叶斯算法在三个模型中(高斯模型、多项式模型、伯努利模型)的运用。...
朴素贝叶斯算法(1)超详细的算法介绍 朴素贝叶斯算法(1)算法介绍朴素贝叶斯算法(2)案例实现引言贝叶斯算法的思想可以概括为选择后验概率最大的类为分类标签,先验概率+数据=后验概率。也就是说我们在实际问题中需要得到的后验概率,可以通过先验概率和数据一起计算得到。一般来说先验概率就是我们对于数据所在领域的历史经验,但是这个经验常常难以量化或者模型化。如今在很多可以具体统计的领域,贝叶斯理论很好用,比如文本分类、垃圾文本过滤,情...
thinkphp 方法合集详解 D:Model类实例化M:实例化一个基础模型类U:完成对URL地址的组装I:用于更加方便和安全的获取系统输入变量C:用于设置、获取,以及保存配置参数A:在内部实例化控制器R:调用某个控制器的操作方法N:计数器方法L:用于启用多语言的情况下,设置和获取当前的语言定义F:仅用于简单数据缓存以上是Think 系统函数库,在/Thinkphp/Common/functions.ph...