【PaddlePaddle飞桨复现论文】——(论文阅读)U-GAT-IT:基于自适应层实例归一化的无监督生成注意力网络用于图像到图像的转换

本文介绍了U-GAT-IT论文,它提出了一种结合自适应层实例归一化(AdaLIN)和注意力模块的无监督图像到图像转换方法。AdaLIN结合了实例归一化和层归一化的优点,以适应不同的内容和样式转换需求。此外,注意力模块通过辅助分类器增强生成器和判别器的能力,有效地区分源域和目标域。
摘要由CSDN通过智能技术生成

本文为百度论文复现营论文阅读心得。
非常感谢百度提供的学习资源,论文复现课程链接为:https://aistudio.baidu.com/aistudio/education/group/info/1340

本人对U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation这篇论文比较感兴趣,因此选择这篇论文进行复现。

在这里插入图片描述

1 主要工作

  • 通过无监督方式实现两个图像域间纹理和像差別很大时的风格转换
  • 实现了相同的网络结构和超参数同时进行需要保持 shapes的图像翻译(例 horse2zebra)和需要改变 shape的图像翻译任务(例cat2dog)

2 模型结构

在这里插入图片描述

3 创新点

  • 提出了一种无监督的图像到图像翻译的新方法,以端到端的方式结合了新的注意力模块和新的自适应标准化功能。
  • 提出了自适应层实例归一化(AdaLIN),其参数可以在训练期间通过自适应选择实例归一化(Instance normalization,IN)和层归一化(Layer Normalization,LN)之间的比率从数据集中学习得到。
  • 利用 attention模块(添加辅助分类器),增强生成器的生成能力,更好的区分源域和目标域;以及判别器的判别能力,更好的区分生成图像和原始图像
3.1 AdaLIN:自适应层实例归一化

各类归一化方法

  • IN进一步局限到单个channel之间,而LN则跨过所有channels。因此,IN假设不同feature的不同channels之间是无关的(uncorrelated),因此单独作用于每个channel可能会引入对原来的语义(semantic content)的干扰;
  • LN尽管是对所有channels作权衡,但考虑到normalization的本质还是“平滑”,容易抹消一些语义信息。

作者把两者结合起来,互相抵消他们之间的不足,同时又结合了两者的优点:
a ^ I = a − μ I σ I 2 + ϵ , a ^ L = a − μ L σ L 2 + ϵ \hat{a}_{I}=\frac{a-\mu_{I}}{\sqrt{\sigma_{I}^{2}+\epsilon}}, \hat{a}_{L}=\frac{a-\mu_{L}}{\sqrt{\sigma_{L}^{2}+\epsilon}} a^I=σI2+ϵ aμI,a^L=σ

  • 3
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值