自适应层归一化(Adaptive Layer Normalization,adaLN)是一种归一化技术,用于深度学习模型中特征的标准化。它结合了传统的层归一化(Layer Normalization, LN)和自适应学习的特性,以提高模型在不同任务和数据集上的表现。
一、层归一化(Layer Normalization,LN)
在了解自适应层归一化之前,我们先回顾一下层归一化。层归一化是一种归一化方法,主要用于处理小批量数据或单个样本数据。它通过对每一层神经元的输出进行归一化,使其均值为 0,方差为 1,从而加速训练过程,提高模型的稳定性。其公式如下:
\[
\hat{x}_i = \frac{x_i - \mu}{\sqrt{\sigma^2 + \epsilon}}
\]
其中,\(x_i\) 是第 \(i\) 个神经元的输入,\(\mu\) 和 \(\sigma^2\) 分别是该层神经元输入的均值和方差,\(\epsilon\) 是防止除零的一个小常数。然后,通过一个可训练的仿射变换恢复归一化后的输出:
\[
y_i = \gamma \hat{x}_i + \beta
\]
其中,\(\gamma\) 和 \(\beta\) 是可训练的参数。