详解自适应层归一化adaLN

        自适应层归一化(Adaptive Layer Normalization,adaLN)是一种归一化技术,用于深度学习模型中特征的标准化。它结合了传统的层归一化(Layer Normalization, LN)和自适应学习的特性,以提高模型在不同任务和数据集上的表现。

一、层归一化(Layer Normalization,LN)

        在了解自适应层归一化之前,我们先回顾一下层归一化。层归一化是一种归一化方法,主要用于处理小批量数据或单个样本数据。它通过对每一层神经元的输出进行归一化,使其均值为 0,方差为 1,从而加速训练过程,提高模型的稳定性。其公式如下:

\[
\hat{x}_i = \frac{x_i - \mu}{\sqrt{\sigma^2 + \epsilon}}
\]

其中,\(x_i\) 是第 \(i\) 个神经元的输入,\(\mu\) 和 \(\sigma^2\) 分别是该层神经元输入的均值和方差,\(\epsilon\) 是防止除零的一个小常数。然后,通过一个可训练的仿射变换恢复归一化后的输出:

\[
y_i = \gamma \hat{x}_i + \beta
\]

其中,\(\gamma\) 和 \(\beta\) 是可训练的参数。

二、自适应层归一化(Adaptive Layer Normalization,adaLN)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值