图片相似度识别算法,百度图片识别算法

本文探讨了图像识别算法的种类,包括人脸识别、车牌识别和字符识别等,强调了预处理、特征提取和机器学习在算法设计中的关键作用。文章特别提到,香港大学的"高斯"人脸识别算法在LabelledFaces数据库上首次超越了人类识别精度,达到了98.52%。此外,还介绍了实时对象检测算法YOLO及其优势。
摘要由CSDN通过智能技术生成

图像识别算法都有哪些

图像识别算法:1人脸识别类(Eigenface,Fisherface算法特别多),人脸检测类(j-v算法,mtcnn)2车牌识别类,车型识别类(cnn)3字符识别(cnn)。。。。。。

无论什么识别算法:本质都是对图像(多维度矩阵)的分类或者拟合算法。那么如何设计一个函数,让不同的矩阵输入进去,得到相应的分类结果和拟合结果呢?

一般的方案是,a先对图像做预处理(边缘检测,滤波操作,二值化等,图像缩放,归一化等)b提取特征。

(对预处理后的图像进一步降低起数据维度,比如lbp特征,hog特征等)c采用机器学习的方法进行分类或者拟合(svm,bp,逻辑回归等)

现在人脸识别最有效的算法是什么?

最好的人脸识别系统在理想情况下比人类识别的表现要好的多爱发猫 www.aifamao.com。但是一旦环境情况变糟,系统的表现就差强人意了。而计算机科学家们当然是非常想要开发出一种算法,在各种情况下都能够表现优异。

现在,中国香港大学的汤晓鸥教授和他的学生路超超(音译)宣布他们攻克了这个难题。他们开发了一

预处理:读取图片 第一步,缩小尺寸。 将图片缩小到8x8的尺寸,总共64个像素。这一步的作用是去除图片的细节,只保留结构、明暗等基本信息,摒弃不同尺寸、比例带来的图片差异。 第二步,简化色彩。 将缩小后的图片,转为64级灰。也就是说,所有像素点总共只有64种颜色。 第三步,计算平均值。 计算所有64个像素的灰平均值。 第四步,比较像素的灰。 将每个像素的灰,与平均值进行比较。大于或等于平均值,记为1;小于平均值,记为0。 第五步,计算哈希值。 将上一步的比较结果,组合在一起,就构成了一个64位的整数,这就是这张图片的指纹。组合的次序并不重要,只要保证所有图片都采用同样次序就行了。 得到指纹以后,就可以对比不同的图片,看看64位中有多少位是不一样的。在理论上,这等同于计算"汉明距离"(Hammingdistance)。如果不相同的数据位不超过5,就说明两张图片很相似;如果大于10,就说明这是两张不同的图片。 你可以将几张图片放在一起,也计算出他们的汉明距离对比,就可以看看两张图片是否相似。 这种算法的优点是简单快速,不受图片大小缩放的影响,缺点是图片的内容不能变更。如果在图片上加几个文字,它就认不出来了。所以,它的最佳用途是根据缩略图,找出原图。 实际应用中,往往采用更强大的pHash算法和SIFT算法,它们能够识别图片的变形。只要变形程不超过25%,它们就能匹配原图。这些算法虽然更复杂,但是原理与上面的简便算法是一样的,就是先将图片转化成Hash字符串,然后再进行比较。 以上内容大部分直接从阮一峰的网站上复制过来,想看原著的童鞋可以去在最上面的链接点击进去看。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值