train()与eval()

在PaddlePaddle的动态图模式中,train()和eval()用于切换网络的训练和预测模式。train()用于进入训练模式,而eval()则用于进入预测模式,后者在评估模型性能时避免了批归一化和Dropout等步骤以提高效率。当网络不使用批归一化和Dropout,或者不需要在训练过程中进行性能检测时,这两个函数的切换是不必要的。
摘要由CSDN通过智能技术生成

Fluid Model train()与eval()

在浏览PaddlePaddle的动态图源码时,一定 会看到在生成train()函数时,首先会调用model.train(),中间每个epoch后会调用model.eval(),一段代码之后,又再调用modle.train().我对PaddlePaddle的架构还不熟悉,一直纳闷为啥用这样做。通过跟一位朋友讨论之后,终于明白了原因。

原来利用PaddlePaddle生成的网络,可以实时的在训练和预测模式下转换, train()转成训练模式,而eval()转成预测模式。那为什么要在中间进行模式的转换?因为在预测模式下,为了节省时间,有一些步骤可以省去,比如batch normalization 和dropout, 这一点在eval()源码中写的很清楚:

def eval(self):
        """
        Sets this Layer and all its sublayers to evaluation mode.
        This only effects certain modules like `Dropout` and `BatchNorm`.
        Returns:
            None
        """
        # global setting
        framework._dygraph_tracer().eval_mode()
        # Layer-level setting
        self.training = False
        for layer in self.sublayers():
            layer.eval()      
traineval是机器学习中常用的两个术语。 Train(训练)是指通过给定的数据集对模型进行参数的学习和调整的过程。在训练阶段,模型根据输入的数据进行计算,并通过与实际标签的比较来更新自身的参数,使模型能够更准确地预测。 模型的训练通常包括以下步骤:输入数据的预处理、选择合适的模型架构、定义损失函数、选择优化算法、迭代地更新模型参数、评估模型的性能。训练的目标是通过不断调整模型参数,使得模型在训练数据上的预测结果与真实标签尽可能地接近,从而提高模型的泛化能力。 Eval(评估)是指在训练完成后,使用另外的测试数据对模型的性能进行评估的过程。评估的目的是检验模型在未见过的数据上的预测性能,以衡量模型的泛化能力。通常通过计算评价指标(如准确率、精确率、召回率、F1-score等)来判断模型的好坏。 在评估阶段,模型不再进行参数的更新,而是直接使用训练得到的参数进行预测。通过与真实标签的比较,评估模型在测试数据上的性能表现。评估的结果可以用于选择最优模型、调整模型参数或者比较不同模型的性能。 总之,traineval是机器学习中用来描述训练和评估模型的两个术语。通过训练,模型通过不断调整参数来提高在训练数据上的性能;通过评估,可以检验模型在未见过数据上的预测能力。这两个过程相辅相成,共同构建一个有效的机器学习模型。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值