Pytorch中的Net.train()和 Net.eval()函数讲解

本文介绍了在深度学习中,Net.train()用于训练阶段启用BatchNormalization和Dropout等训练特性的功能,而Net.eval()在测试阶段禁用这些特性以提高性能。两者的主要目的是确保训练和测试阶段模型行为一致,避免对测试数据的干扰。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

这两个方法通常用于训练和测试阶段

1. Net.train()

该代码用在训练模式中
主要作用:
模型启用了训练时特定的功能(Batch Normalization 和 Dropout)。
在这种模式下,模型会根据训练数据进行参数更新,并且会在前向传播中跟踪梯度,以便进行反向传播和参数更新。
model = Net()
model.train()  # 设置模型为训练模式

2. Net.eval()

该代码用在测试模块中
主要作用:
在评估模式下,模型禁用了一些训练时的特定功能(Batch Normalization 和 Dropout)。
此外,模型在前向传播中不再跟踪梯度,以减少内存消耗,并且不会进行参数更新。

3. 总结

使用这两个方法的主要目的是确保在训练和测试阶段使用正确的模型行为。

在没有涉及到 Batch Normalization 和 Dropout 的模型中,这两个函数的使用通常不是必须的,因为模型在训练和测试中的行为没有本质的不同。但在包含了这些层的模型中,使用 net.train() 和 net.eval() 可以确保在训练和测试阶段使用正确的模型行为,以防止对测试数据的不当影响。

在测试阶段,关闭一些训练中使用的特殊处理可以提高模型的性能和稳定性,避免对测试数据的不当影响。


在训练过程中,一般会按照以下步骤进行:

model.train()  # 设置模型为训练模式
# 训练代码

而在测试/评估过程中,一般会按照以下步骤进行:

model.eval()  # 设置模型为评估模式
# 测试/评估代码
### 关于深度学习中的 `main` 函数 在编程环境中,尤其是使用 Python 进行深度学习开发时,`main` 函数通常作为程序执行的入口点。下面展示了一个典型的基于 TensorFlow Keras 的深度学习模型训练脚本结构。 #### 完整的深度学习项目框架下的 `main` 函数示例 ```python import tensorflow as tf from tensorflow import keras import numpy as np def load_data(): """加载数据集""" mnist = keras.datasets.mnist (train_images, train_labels), (test_images, test_labels) = mnist.load_data() # 数据预处理 train_images = train_images / 255.0 test_images = test_images / 255.0 return (train_images, train_labels), (test_images, test_labels) def build_model(): """构建并编译模型""" model = keras.Sequential([ keras.layers.Flatten(input_shape=(28, 28)), keras.layers.Dense(128, activation='relu'), keras.layers.Dropout(0.2), keras.layers.Dense(10) ]) loss_fn = keras.losses.SparseCategoricalCrossentropy(from_logits=True) model.compile(optimizer='adam', loss=loss_fn, metrics=['accuracy']) return model def main(): """主函数逻辑""" print("Loading data...") (train_images, train_labels), (test_images, test_labels) = load_data() print("Building and compiling the model...") model = build_model() print("Training the model...") model.fit(train_images, train_labels, epochs=5) print("Evaluating on test set...") test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2) print(f"\nTest accuracy: {test_acc}") if __name__ == "__main__": main() # 调用主函数启动整个流程 ``` 此代码片段展示了如何定义一个简单的命令行应用程序来训练评估 MNIST 手写数字识别任务上的神经网络模型[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码农研究僧

你的鼓励将是我创作的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值