利用Python里的cv2(opencv)获取图片中的人物照片

一时兴起想学习一下人脸识别,所以就上网学习了一下
大家要是觉得有用就点个赞呗

代码展示和效果展示

代码展示

话不多说先上代码 。

#导入opencv
import cv2
import os
#创建data文件夹
try:
    os.mkdir(os.getcwd()+'\\'+'data')
except:
    pass

# 导入人脸级联分类器引擎,'.xml'文件里包含训练出来的人脸特征,cv2.data.haarcascades即为存放所有级联分类器模型文件的目录
face_cascade = cv2.CascadeClassifier('haarcascade\haarcascade_frontalface_default.xml')
# 导入人眼级联分类器引擎吗,'.xml'文件里包含训练出来的人眼特征
eye_cascade = cv2.CascadeClassifier('haarcascade\haarcascade_eye.xml')

# 用人脸级联分类器引擎进行人脸识别,返回的faces为人脸坐标列表,1.3是放大比例,5是重复识别次数
faces = face_cascade.detectMultiScale(img, 1.3, 5)

print(faces)
i=1
# 对每一张脸,进行如下操作
for (x,y,w,h) in faces:
    print(x,y,w,h)
    # 裁剪坐标为[y0:y1, x0:x1]
    cropped = img[y:y+h, x:x+w]
    cv2.imwrite('./data/cut'+str(i)+'.jpg', cropped)
    i=i+1
    
    # 画出人脸框,蓝色(BGR色彩体系),画笔宽度为2
    img = cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2)
    
    # 框选出人脸区域,在人脸区域而不是全图中进行人眼检测,节省计算资源
    face_area = img[y:y+h, x:x+w]
    eyes = eye_cascade.detectMultiScale(face_area)
    # 用人眼级联分类器引擎在人脸区域进行人眼识别,返回的eyes为眼睛坐标列表
    for (ex,ey,ew,eh) in eyes:
        #画出人眼框,绿色,画笔宽度为1
        cv2.rectangle(face_area,(ex,ey),(ex+ew,ey+eh),(0,255,0),1)

# 在"img2"窗口中展示效果图
cv2.imshow('img2',img)
# 监听键盘上任何按键,如有案件即退出并关闭窗口,并将图片保存为output.jpg
cv2.waitKey(0)
cv2.destroyAllWindows()
cv2.imwrite('output.jpg',img)

效果展示

这是处理之前的照片
这是处理之前的照片
这是处理之后的照片(其中眼睛并不是很清楚)
这是处理之前的照片
获取到的人脸文件
获取到的人脸

分步解析

下载模块cv2

用pip下载
输入

pip install opencv-python

注意不是cv2
同时提醒以下诸位,在pip下载模块时如果报错可以先看看是否因为库在pip下载的时候不是这个名字

建立新的文件夹

import os
#创建data文件夹
try:
    os.mkdir(os.getcwd()+'\\'+'data')  #获取当前位置的绝对路径然后建立新的文件夹路径
except:
    pass

使用try except方法是为了防止原先建立了data文件夹之后报错

裁剪图片

import cv2
 
img = cv2.imread('image1.jpg')
cropped = img[0:128, 0:512]  # 裁剪坐标为[y0:y1, x0:x1] 注意这里先写Y轴再写X轴
cv2.imwrite('output.jpg', cropped)
print(img.shape)

其中的img.shape是为了获取图片尺寸,在我们的代码当中暂时不需要。在这里解释一下img.shape里的参数,他们是(R,G,B,通道数)。

人脸识别

# 单张图片人脸+眼睛识别
# bilibili视频教程:同济子豪兄
# 感谢这位博主的代码和注释

#导入opencv
import cv2

# 导入人脸级联分类器引擎,'.xml'文件里包含训练出来的人脸特征,cv2.data.haarcascades即为存放所有级联分类器模型文件的目录
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
# 导入人眼级联分类器引擎吗,'.xml'文件里包含训练出来的人眼特征
eye_cascade = cv2.CascadeClassifier('haarcascade_eye.xml')

# 读入一张图片,引号里为图片的路径,需要你自己手动设置
img = cv2.imread('image2.jpg')

# 用人脸级联分类器引擎进行人脸识别,返回的faces为人脸坐标列表,1.3是放大比例,5是重复识别次数
faces = face_cascade.detectMultiScale(img, 1.3, 5)

print(faces)

# 对每一张脸,进行如下操作
for (x,y,w,h) in faces:
    # 画出人脸框,蓝色(BGR色彩体系),画笔宽度为2
    img = cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2)
    # 框选出人脸区域,在人脸区域而不是全图中进行人眼检测,节省计算资源
    face_area = img[y:y+h, x:x+w]
    eyes = eye_cascade.detectMultiScale(face_area)
    # 用人眼级联分类器引擎在人脸区域进行人眼识别,返回的eyes为眼睛坐标列表
    for (ex,ey,ew,eh) in eyes:
        #画出人眼框,绿色,画笔宽度为1
        cv2.rectangle(face_area,(ex,ey),(ex+ew,ey+eh),(0,255,0),1)

# 在"img2"窗口中展示效果图
cv2.imshow('img2',img)
# 监听键盘上任何按键,如有案件即退出并关闭窗口,并将图片保存为output.jpg
cv2.waitKey(0)
cv2.destroyAllWindows()
cv2.imwrite('output.jpg',img)

参考内容链接

参考内容链接链接: 玩转OpenCV人脸识别.

在使用OpenCV提取图片人物轮廓的过程通常涉及以下步骤: 1. 读取图片:使用OpenCV中的`imread`函数读取目标图片2. 转换颜色空间:将图片从BGR颜色空间转换到灰度空间,以便处理,这可以通过`cvtColor`函数实现。 3. 应用阈值或边缘检测:为了更好地提取轮廓,通常需要先将图片二值化,这可以通过设置一个阈值来完成,可以使用`threshold`或`adaptiveThreshold`函数。 4. 寻找轮廓:使用`findContours`函数来检测和提取图片中的轮廓。 5. 处理轮廓:可以对提取到的轮廓进行筛选、排序等操作。 6. 保存图片:将提取了轮廓的图片保存到磁盘,这可以通过`imwrite`函数实现。 以下是一个简单的代码示例,展示如何使用PythonOpenCV提取图片中的人物轮廓并另存为: ```python import cv2 import numpy as np # 读取图片 image = cv2.imread('path_to_image.jpg') # 转换为灰度图 gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # 应用阈值,获取二值化图像 _, binary_image = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY) # 寻找轮廓 contours, _ = cv2.findContours(binary_image, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) # 遍历轮廓并绘制 for contour in contours: # 可以设置条件来过滤不需要的轮廓 if cv2.contourArea(contour) > 100: # 这的100是一个示例值,实际应用中需要根据需要调整 # 绘制轮廓 cv2.drawContours(image, [contour], -1, (0, 255, 0), 3) # 保存图片 cv2.imwrite('path_to_save_image.jpg', image) ``` 在上述代码中,`'path_to_image.jpg'`应替换为你的图片路径,`'path_to_save_image.jpg'`应替换为你希望保存的新图片路径。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值