【AIGC】本地部署通义千问 1.5 (PyTorch)

今天想分享一下 Qwen 1.5 官方用例的二次封装( huggingface 说明页也有提供源码),其实没有太多的技术含量。主要是想记录一下如何从零开始在不使用第三方工具的前提下,以纯代码的方式本地部署一套大模型,相信这对于技术人员来说还是非常有用的。

虽然现在人人都可以用像 ollama 这种工具一键部署本地大模型,但想通过这种方式将大模型深度接入现有系统可就有点麻烦。 因此我觉得还是有必要各位分享一下这种纯代码的模式,希望能够帮助到更多的人。

1. 模型下载

通过之前的文章可以知道,现在国内可以通过 https://hf-mirror.com/ 下载 huggingface 大模型。在配置好环境变量后,可以通过以下命令下载 Qwen:

yuanzhenhui@MacBook-Pro ~ % cd /Users/yuanzhenhui/Documents/code_space/git/processing/python/tcm_assistant/transformer/model/qwen
yuanzhenhui@MacBook-Pro qwen % huggingface-cli download --resume-download Qwen/Qwen1.5-7B-Chat --local-dir .
Consider using `hf_transfer` for faster downloads. This solution comes with some limitations. See https://huggingface.co/docs/huggingface_hub/hf_transfer for more details.
Fetching 14 files:   7%|█▊                       | 1/14 [00:00<00:06,  1.87it/s]downloading https://hf-mirror.com/Qwen/Qwen1.5-7B-Chat/resolve/294483ad23713036574b30587b186713373f4271/README.md to /Users/yuanzhenhui/.cache/huggingface/hub/models--Qwen--Qwen1.5-7B-Chat/blobs/0963c198257a0607c4d2def66a84aec172240afd.incomplete
README.md: 4.26kB [00:00, 6.40MB/s]
Fetching 14 files: 100%|████████████████████████| 14/14 [00:01<00:00, 12.81it/s]
/Users/yuanzhenhui/Documents/code_space/git/processing/python/tcm_assistant/transformer/model/qwen

由于我之前已经 checkout 过一遍了,因此会显示上面的输出。如果是第一次 checkout 那么你可能要等一段时间才能全部下载完成(毕竟还挺大的)。

如果你是 MacOS 的用户那么模型的路径将会如下所示:

(base) yuanzhenhui@MacBook-Pro hub % pwd
/Users/yuanzhenhui/.cache/huggingface/hub
(base) yuanzhenhui@MacBook-Pro hub % ls
models--BAAI--bge-large-zh-v1.5	models--Qwen--Qwen1.5-7B-Chat	version.txt
(base) yuanzhenhui@MacBook-Pro hub % 

由于下载的是 “Qwen/Qwen1.5-7B-Chat” 因此下载下来后会以“models–Qwen–Qwen1.5-7B-Chat”名称进行保存。

这时有小伙伴会问,huggingface-cli 命令中不是有写“–local-dir .”参数吗?如果模型不是保存在这个参数指定的位置,那么这个参数有什么用途?这个“.”(本地目录)又有什么意义?

其实通过 local-dir 存放的是大模型的软连接和配置文件,如下图所示:

(base) yuanzhenhui@MacBook-Pro qwen % tree -l
.
├── LICENSE
├── README.md
├── config.json
├── generation_config.json
├── merges.txt
├── model-00001-of-00004.safetensors -> ../../../../../../../../../.cache/huggingface/hub/models--Qwen--Qwen1.5-7B-Chat/blobs/9e8f7873d7c4c74b8883db207a08bf8a783ec8c26da6b3d660a0929048ce6422
├── model-00002-of-00004.safetensors -> ../../../../../../../../../.cache/huggingface/hub/models--Qwen--Qwen1.5-7B-Chat/blobs/e573fdaf3eba785c4b31b8858288f762f3541f09d75b53dfb1ae4d8ee5011d65
├── model-00003-of-00004.safetensors -> ../../../../
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Kida 的技术小屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值