本地部署AI大模型三步走(Ollama+通义千问)

自ChatGPT在2022年11月30日问世以来,各类人工智能驱动的自然语言处理模型就纷纷冒出来了,它们可以理解和学习人类的语言跟人类进行对话,并能根据聊天的上下文来进行互动。目前ChatGPT-4在某些专业知识领域已经达到甚至超过博士生的水平了。在翻译、创作、知识问答、图片生成、视频剪辑、编程、测试、检验等等领域,AI大模型可谓大放异彩!网上也议论纷纷,说以后AI要淘汰这个职业,那个职业的,搞得人心惶惶的。实际上,AI大模型还是有一些局限性的,难以处理过于复杂的任务。但AI大模型的发展已经是大势所趋,不可逆转,它将深刻改变我们的工作和生活方式。因此,我们要积极拥抱AI大模型,不断提升自己的AI技能,与时俱进。毕竟:“未来淘汰的是不会用AI大模型的人!”

好了,现在开始抱大腿。怎么拥抱AI大模型呢?平时都是网上搜一下免费的AI会话窗口玩一下,但受数量限制不过瘾。那,可以把大模型装到自己的电脑上吗?答案是肯定的。这里得感谢各位开源大神,让我们普通人可以通过简单操作也能拥有AI模型。

先给大家介绍一下今天的主角Ollama:Ollama是一个强大的工具,它能在本地轻松部署和运行大型语言模型,如Gemma, 助你轻松跨过这道门槛。它是一个开源框架,专门设计用于在本地运行大型语言模型。它将模型权重、配置和数据捆绑到一个包中,优化了设置和配置细节,包括GPU使用情况,从而简化了在本地运行大型模型的过程。

下面提供具体的操作步骤,带大家实操。

一、下载Ollama

打开官网:https://ollama.com/

说明:建议右键点“复制链接地址”,用Gopeed下载工具下载:

二、安装Ollama****

运行“OllamaSetup.exe”,

说明一点:默认安装在C盘,如果需要把下载AI模型的路径改为D盘,请参照本文末尾的【几点说明】的第一点。

三、下载通义千问大模型

通义千问,是阿里云推出的一个超大规模的语言模型,功能包括多轮对话、文案创作、逻辑推理、多模态理解、多语言支持。能够跟人类进行多轮的交互,也融入了多模态的知识理解,且有文案创作能力,能够续写小说,编写邮件等。

打开“记事本”,复制下行代码,另存为“ollama run qwen.bat”文件。

ollama run qwen:14b 

以后需要运行通义千问,双击运行刚才保存的bat文件即可。当然也可以每次在命令行直接运行命令来启用。

通义千问AI模型下载中

通义千问AI模型部署完成

通义千问AI模型初体验

通义千问AI模型-脑筋急转弯问答互动

是不是超简单,超方便,超能力?!马上实操体验一下吧。

【几点说明】

1、Ollama默认安装在C盘,这时下载的大模型文件也会在C盘,如果你的电脑C盘空间不足,建议按下面方法把下载路径改到D盘。

增加系统变量

变量名:OLLAMA_MODELS

变量值: D:\ollama\models

2、可以部署可视化操作界面

docs.docker.com

https://github.com/open-webui/open-webui

3、部署运行Llama3大模型命令:ollama run llama3:8b

 部署运行Phi3大模型命令:ollama run phi3

4、ollama list 查看本地AI大模型列表

5、ollama --help 命令行帮助

祝你好运!

在这里插入图片描述

如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

### 通义本地部署的硬件要求 对于通义大模型本地部署,合适的硬件配置能显著提升性能并确保稳定运行。具体来说: #### 处理器 (CPU) 推荐使用多核心处理器来加速计算任务。虽然理论上单核 CPU 可以工作,但对于大型模型而言效率较低。建议至少配备具有多个物理核心的现代 Intel 或 AMD 芯片[^1]。 #### 图形处理单元 (GPU) 尽管可以仅依靠 CPU 进行推理,但为了获得更好的速度和更低的成本,强烈建议采用 NVIDIA GPU 来加速训练与预测过程。特别是那些支持 CUDA 技术的产品更为理想。如果遇到像 PyTorch 安装不当导致无法利用 GPU 的情况,则需排查相关依赖项是否正确设置[^2]。 #### 内存 (RAM) 考虑到该类模型通常占用大量内存资源,在选择服务器或工作站时应优先考虑拥有较大容量 RAM 的设备。一般情况下,最少需要 32GB;而对于更复杂的场景或者更大规模的数据集,则可能需要更高规格的记忆体,比如 64GB 或以上。 #### 存储空间 由于预训练权重文件体积庞大以及后续可能会产生的日志、缓存等数据存储需求,充足的硬盘空间不可或缺。SSD 类型固态驱动器不仅提供了更快的速度还具备更高的耐用度,因此是较好的选项之一。预计预留至少几百 GB 到数 TB 不等的空间用于整个项目的生命周期内使用。 ```bash # 检查当前系统的硬件信息 lscpu free -h df -H nvidia-smi ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值