Description
萧芸斓是Z国的公主,平时的一大爱好是采花。今天天气晴朗,阳光明媚,公主清晨便去了皇宫中新建的花园采花
。花园足够大,容纳了n朵花,花有c种颜色(用整数1-c表示),且花是排成一排的,以便于公主采花。公主每次
采花后会统计采到的花的颜色数,颜色数越多她会越高兴!同时,她有一癖好,她不允许最后自己采到的花中,某
一颜色的花只有一朵。为此,公主每采一朵花,要么此前已采到此颜色的花,要么有相当正确的直觉告诉她,她必
能再次采到此颜色的花。由于时间关系,公主只能走过花园连续的一段进行采花,便让女仆福涵洁安排行程。福涵
洁综合各种因素拟定了m个行程,然后一一向你询问公主能采到多少朵花(她知道你是编程高手,定能快速给出答
案!),最后会选择令公主最高兴的行程(为了拿到更多奖金!)。
Input
第一行四个空格隔开的整数n、c以及m。
接下来一行n个空格隔开的整数,每个数在[1, c]间,第i个数表示第i朵花的颜色。
接下来m行每行两个空格隔开的整数l和r(l ≤ r),表示女仆安排的行程为公主经过第l到第r朵花进行采花。
Output
共m行,每行一个整数,第i个数表示公主在女仆的第i个行程中能采到的花的颜色数。
Sample Input
5 3 5
1 2 2 3 1
1 5
1 2
2 2
2 3
3 5
Sample Output
2
0
0
1
0
【样例说明】
询问[1, 5]:公主采颜色为1和2的花,由于颜色3的花只有一朵,公主不采;询问[1, 2]:颜色1和颜色2的花均只有一朵,公主不采;
询问[2, 2]:颜色2的花只有一朵,公主不采;
询问[2, 3]:由于颜色2的花有两朵,公主采颜色2的花;
询问[3, 5]:颜色1、2、3的花各一朵,公主不采。
HINT
【数据范围】
对于100%的数据,1 ≤ n ≤ 10^6,c ≤ n,m ≤10^6。
Source
思路:
和HH的项链差不多。
我们先预处理出来 pre[i] 即第 i 个颜色上一次出现的位置。
用树状数组记录每一种颜色最后出现的位置。
即更新 (pre[pre[i]],-1)(pre[i],1)
这个HH的项链 更新 (pre[i],-1) (i,1);
#include<bits/stdc++.h>
#define low(x) (x & (-x))
using namespace std;
const int M = 1e6+100;
struct node
{
int a,b,c;
}f[M];
int c[M],d[M],pre[M],n,m,len,a[M],b[M],g[M],k;
int e[M];
bool ccc(const node x, const node y){
return x.b < y.b;
}
void add(int x, int y){
for (int i = x; i <= n; i += low(i))
g[i]+=y;
}
int Query(int x){
int ans = 0;
for (int i = x; i > 0; i -= low(i))
ans += g[i];
return ans;
}
int main(){
scanf("%d%d%d",&n,&k,&m);
for (int i = 1; i <= n; ++i){
scanf("%d",&a[i]);
}
for (int i = 1; i <= n; ++i){
pre[i] = e[a[i]];
e[a[i]] = i;
}
for (int i = 0; i < m; ++i){
scanf("%d%d",&f[i].a, &f[i].b);
f[i].c = i;
}
sort(f,f+m,ccc);
int j = 0,ans;
for (int i = 1; i <= n; ++i){
if (pre[pre[i]]) add(pre[pre[i]],-1);
if (pre[i]) add(pre[i],1);
while((f[j].b == i) && (j < m)){
ans = Query(i) - Query(f[j].a-1);
d[f[j].c] = ans;
j++;
}
}
for (int i = 0; i < m; ++i)
printf("%d\n",d[i]);
return 0;
}