1.QEC分类和DFS
QEC分为被动和主动两种方式。
主动方式更多。
DFS 无退相干子空间 (被动的)
定义:DFS 是由一组量子态组成的子空间,在这个子空间内,系统的态对某些特定类型的环境噪声具有不变性。
它基于量子系统和环境之间的相互作用具有某种对称性,从而使某些特定态“免疫”于这些噪声的干扰。
主动方法:量子比特应用重复旋转,以便这些旋转与导致错误的自然动力学相结合。这些方法最初被称为Bang-Bang对照,主要是为NMR系统开发的。
Bang-Bang:控制通过在量子系统中施加快速且频繁的脉冲,打断或抵消外界噪声对系统的影响。这种控制类似于给系统“纠正”的操作,确保量子态保持其初始性质。
在量子系统中,BB 控制通过周期性施加量子门(例如 Pauli-X 或旋转门)或驱动场实现,用以干扰噪声与量子态的耦合。
2.预备知识
2.1 幺正群
幺正矩阵满足性质 G†=G−1,即它的共轭转置等于它的逆矩阵。
不过,U(2) 群包含一个整体相位因子,它不会影响物理测量。如果去掉这一整体相位,就得到特殊幺正群 SU(2),它由行列式等于 1 的 2×2 幺正矩阵组成。任何单量子比特操作都可以表示为 SU(2)的一个元素,并且可以用 SU(2) 的生成元来参数化。
由于整体相位因子 不影响物理测量结果,它只是数学上的“冗余信息”。在量子力学中,我们通常只关心量子态的相对相位(不同部分的概率幅之间的相位差),而不关心整体相位。
整体相位因子是不可观测的物理冗余,因为它不会影响任何实验测量的概率或可观测量。
泡利矩阵 σx,σy,σz 对应布洛赫球上的三个正交轴(x、y、z),因此 G 的线性组合可以描述量子比特在布洛赫球上的任意旋转。
这些矩阵的反对称性质和复数系数间的关系,需要特定条件来确保组合后的矩阵依然是幺正的。
2.2 量子纠错的一些一般要求
“U (|φ〉 ⊗ |ψ〉) = |φ〉 ⊗ |φ〉 ∀|φ〉
不存在复制量子态的方式
该公式描述的操作 U 并非通用的量子态复制过程,而是一种在特定条件下“同步”量子态的行为。它可能涉及辅助资源(例如初始关联态或纠缠态),因此不会违反无克隆定理。要实现这样的操作,前提是系统中初始状态之间的关系已经被巧妙设计过。
量子纠错(QEC)的基本原理可以归纳为“冗余编码”的思想。这意味着将希尔伯特空间的总维度扩展到超出存储单个量子比特信息所需的最小空间。通过这种方式,单个量子比特上发生的错误会被映射到一组互相正交的子空间中,而这些子空间的大小由编码中使用的量子比特数量决定。最后,量子纠错协议不能允许我们获得编码态中系数 α和 β 的信息,因为这样会导致系统的量子态坍缩。
3.量子错误
提出了两种算法