抽象代数 04.01 群的生成元组

http://www.icourses.cn 南开大学《抽象代数》

§4.1 群的生成元组 \color{blue}\text{\S 4.1 群的生成元组} §4.1 群的生成元组

本节讨论群的生成元组及元素的阶的一些性质。给出n个文字的对称群 S n S_n Sn的生成组。
设S是群G的非空子集,以 ⟨ S ⟩ \lang S \rang S表示G的包含S的最小子群,即S 生 成 的 子 群 {\color{blue}生成的子群} 。显然 ⟨ S ⟩ \lang S \rang S是G中所有包含S的子群的交。
定 理 4.1.1 设 S 是 群 G 的 非 空 子 集 , 则 {\color{blue}定理4.1.1 \quad}设S是群G的非空子集,则 4.1.1SG
⟨ S ⟩ = { x 1 x 2 ⋯ x m ∣ x i ∈ S ∪ S − 1 , 1 ≤ i ≤ m , m ∈ N } . \lang S \rang = \lbrace x_1x_2\cdots x_m | x_i \in S \cup S^{-1}, 1 \leq i \leq m, m \in N \rbrace. S={x1x2xmxiSS1,1im,mN}.
证 : 令 S ‾ = { x 1 x 2 ⋯ x m ∣ x i ∈ S ∪ S − 1 , 1 ≤ i ≤ m , m ∈ N } . 由 ⟨ S ⟩ 为 子 群 , {\color{blue}证:}令\overline{S} = \lbrace x_1x_2 \cdots x_m | x_i \in S \cup S^{-1}, 1 \leq i \leq m, m \in N \rbrace.由\lang S \rang 为子群, :S={x1x2xmxiSS1,1im,mN}.S
且 S ⊆ ⟨ S ⟩ . 知 S − 1 ⊆ ⟨ S ⟩ . 因 而 S ⊆ S ‾ ⊆ ⟨ S ⟩ . 又 ⟨ S ⟩ 是 含 S 的 最 小 子 群 , 且S \subseteq \lang S \rang.知S^{-1} \subseteq \lang S \rang. 因而S \subseteq \overline{S} \subseteq \lang S \rang.又\lang S \rang 是含S的最小子群, SS.S1S.SSS.SS
故 只 需 证 明 S ‾ 为 子 群 , 则 S ‾ = ⟨ S ⟩ . 故只需证明\overline{S}为子群,则\overline{S}=\lang S \rang. SS=S.
设 x 1 x 2 ⋯ x m ∈ S ‾ , y 1 y 2 ⋯ y n ∈ S ‾ . 于 是 y i − 1 ∈ S ∪ S − 1 , 1 ≤ i ≤ m . 则 有 设x_1x_2\cdots x_m \in \overline{S},y_1y_2\cdots y_n \in \overline{S}.于是y_i^{-1}\in S \cup S^{-1},1\leq i \leq m.则有 x1x2xmS,y1y2ynS.yi1SS1,1im.
( x 1 x 2 ⋯ x m ) ( y 1 y 2 ⋯ y n ) − 1 = x 1 x 2 ⋯ x m y n − 1 y n − 1 − 1 ⋯ y 2 − 1 y 1 − 1 ∈ S ‾ , (x_1x_2\cdots x_m)(y_1y_2\cdots y_n)^{-1} = x_1x_2\cdots x_my_n^{-1}y_{n-1}^{-1}\cdots y_2^{-1}y_1^{-1} \in \overline{S}, (x1x2xm)(y1y2yn)1=x1x2xmyn1yn11y21y11S,
因 而 S ‾ 为 G 的 子 群 , 故 S ‾ = ⟨ S ⟩ . 因而\overline{S}为G的子群,故\overline{S} = \lang S \rang. SGS=S.
定 义 4.1.1 若 S 为 G 的 子 群 , 且 G = ⟨ S ⟩ . 则 称 S 为 G 的 生 成 组 . 若 G 有 一 个 含 有 限 个 元 素 的 生 成 组 , 则 称 G 是 有 限 生 成 的 . {\color{blue}定义4.1.1\quad}若S为G的子群,且G=\lang S \rang.则称S为G的{\color{blue}生成组}.若G有一个含有限个元素的生成组,则称G是{\color{blue}有限生成的}. 4.1.1SGG=S.SG.GG.
例 1 若 G = ⟨ a ⟩ 为 循 环 群 , 则 a 本 身 就 是 生 成 组 , 这 时 称 a 为 G 的 生 成 元 . {\color{blue}例1\quad}若G = \lang a \rang为循环群,则a本身就是生成组,这时称a为G的{\color{blue}生成元}. 1G=aaaG.
在 §1.5 中 讨 论 过 这 种 群 。 在{\text{\S 1.5}}中讨论过这种群。 §1.5
例 2 设 G = S 3 , 又 a = ( 1 2 3 2 1 3 ) , b = ( 1 2 3 3 2 1 ) . 则 S 3 = ⟨ { a , b } ⟩ . {\color{blue}例2\quad}设G = S_3,又a = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, b = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}.则S_3 = \lang \lbrace a, b \rbrace \rang. 2G=S3,a=(122133),b=(132231).S3={a,b}.
设 G 1 = ⟨ a ⟩ . 则 G 1 为 S 3 的 二 阶 子 群 , 且 b ∉ G 1 . 于 是 G 1 ⊂ ⟨ { a , b } ⟩ . 又 ⟨ { a , b } ⟩ 的 阶 n 为 S 3 的 阶 6 的 因 子 , 故 有 2 ∣ n , 2 &lt; n , 而 且 n ∣ 6. 因 而 有 n = 6. 由 此 知 S 3 = ⟨ { a , b } ⟩ . 设G_1 = \lang a \rang.则G_1为S_3的二阶子群,且b \notin G_1.于是G_1 \subset \lang \lbrace a, b \rbrace \rang.又\lang \lbrace a, b \rbrace \rang的阶n为S_3的阶6的因子,故有2|n, 2 &lt; n,而且n|6.因而有n=6.由此知S_3=\lang \lbrace a, b \rbrace \rang. G1=a.G1S3b/G1.G1{a,b}.{a,b}nS362n,2<n,n6.n=6.S3={a,b}.
定 义 4.1.2 设 集 合 { i 1 , i 2 , ⋯ &ThinSpace; , i r } 为 集 合 { 1 , 2 , ⋯ &ThinSpace; , n } 的 子 集 . 若 σ ∈ S n , 满 足 : {\color{blue}定义4.1.2\quad}设集合\lbrace i_1, i_2, \cdots, i_r \rbrace为集合\lbrace 1, 2, \cdots, n \rbrace的子集.若\sigma \in S_n,满足: 4.1.2{i1,i2,,ir}{1,2,,n}.σSn,
σ ( i j ) = i j + 1 , 1 ≤ j ≤ r − 1 ; \qquad \sigma(i_j) = i_{j+1}, 1 \leq j \leq r - 1; σ(ij)=ij+1,1jr1;
σ ( i r ) = i 1 ; \qquad \sigma(i_r) = i_1; σ(ir)=i1;
σ ( k ) = k , k ∉ { i 1 , i 2 , ⋯ &ThinSpace; , i r } , \qquad \sigma(k) = k, k \notin \lbrace i_1, i_2, \cdots, i_r \rbrace, σ(k)=k,k/{i1,i2,,ir},
则 称 σ 为 一 个 长 为 r 的 轮 换 或 r − 轮 换 , 这 时 记 σ = ( i 1 i 2 ⋯ i r ) . 则称\sigma为一个{\color{blue}长为r的轮换}或{\color{blue}r-轮换},这时记\sigma = (i_1i_2\cdots i_r). σrr,σ=(i1i2ir).
将 2 − 轮 换 ( i j ) 成 为 对 换 . 将2-轮换(ij)成为{\color{blue}对换}. 2(ij).
若 σ = ( i 1 i 2 ⋯ i r ) 与 τ = ( j 1 j 2 ⋯ i s ) 是 两 个 轮 换 , 且 若\sigma = (i_1i_2\cdots i_r)与\tau = (j_1j_2\cdots i_s)是两个轮换,且 σ=(i1i2ir)τ=(j1j2is)
{ i 1 , i 2 , ⋯ &ThinSpace; , i r } ∩ { j 1 , j 2 , ⋯ &ThinSpace; , j s } = ∅ , \qquad \lbrace i_1, i_2, \cdots, i_r \rbrace \cap \lbrace j_1, j_2, \cdots, j_s \rbrace = \empty, {i1,i2,,ir}{j1,j2,,js}=,
则 称 σ 与 τ 为 不 相 交 的 轮 换 . 则称\sigma与\tau为{\color{blue}不相交的轮换}. στ.
一 个 r − 轮 换 ( i 1 i 2 ⋯ i r ) 有 r 种 不 同 的 表 示 : 一个r-轮换(i_1i_2\cdots i_r)有r种不同的表示: r(i1i2ir)r:
( i 1 i 2 ⋯ i r ) = ( i 2 i 3 ⋯ i r i 1 ) = ⋯ = ( i r i 1 ⋯ i r − 1 ) . (i_1i_2\cdots i_r) = (i_2i_3\cdots i_ri_1) = \cdots = (i_ri_1\cdots i_{r-1}). (i1i2ir)=(i2i3iri1)==(iri1ir1).
定 义 4.1.2 设 a ∈ S n , 且 a = σ 1 σ 2 ⋯ σ k , 其 中 σ i 为 r i − 轮 换 : i = ̸ j 时 , σ i 与 σ j 不 相 交 , 1 ≤ i , j ≤ k , 则 a 的 阶 为 r 1 , r 2 , ⋯ &ThinSpace; , r k 的 最 小 公 倍 数 [ r 1 , r 2 , ⋯ &ThinSpace; , r k ] . {\color{blue}定义4.1.2\quad}设a \in S_n,且a = \sigma_1 \sigma_2 \cdots \sigma_k,其中\sigma_i为r_i-轮换:i =\not j时,\sigma_i与\sigma_j不相交,1 \leq i,j \leq k,则a的阶为r_1,r_2, \cdots, r_k的最小公倍数[r_1,r_2,\cdots, r_k]. 4.1.2aSn,a=σ1σ2σk,σirii≠j,σiσj,1i,jk,ar1,r2,,rk[r1,r2,,rk].
证 对 因 子 个 数 k 用 数 学 归 纳 法 证 明 。 k = 1 时 , a = ( i 1 i 2 ⋯ i r 1 ) 是 一 个 轮 换 。 对 任 何 s , 1 ≤ s ≤ r 1 , 有 {\color{blue}证\quad}对因子个数k用数学归纳法证明。k=1时,a=(i_1i_2\cdots i_{r_1})是一个轮换。对任何s,1 \leq s \leq r_1,有 kk=1a=(i1i2ir1)s,1sr1,
a s ( j ) = j , j = ̸ i 1 , i 2 , ⋯ &ThinSpace; , i r . \qquad a^{s}(j) = j, j =\not i_1, i_2, \cdots, i_r. as(j)=j,j≠i1,i2,,ir.
而 而
a s ( i j ) = { i s + j , 当 j + s ≤ r 1 ; i s + j − r 1 , 当 j + s &gt; r 1 . a^{s}(i_j) = \left\{\begin{array}{l} i_{s+j}, 当j+s \leq r_1; \\ i_{s+j-r_1}, 当j+s &gt; r_1. \end{array} \right. as(ij)={is+j,j+sr1;is+jr1,j+s>r1.
于 是 , s &lt; r 1 时 , a s = ̸ i d , 而 s = r 1 时 , a r 1 = i d , 故 a 的 阶 为 r 1 . 于是, s&lt; r_1时,a^{s} =\not id,而s=r_1时,a^{r_1}=id,故a的阶为r_1. ,s<r1as≠id,s=r1,ar1=id,ar1.
设 k − 1 ( k ≥ 2 ) 时 定 理 成 立 。 设 a = σ 1 σ 2 ⋯ σ k , 令 设k-1(k \geq 2)时定理成立。设a=\sigma_1 \sigma_2 \cdots \sigma_k,令 k1(k2)a=σ1σ2σk,
a 1 = σ 2 σ 3 ⋯ σ k , \qquad a_1 = \sigma_2\sigma_3\cdots \sigma_k, a1=σ2σ3σk,
于 是 a 1 的 阶 为 [ r 2 , r 3 , ⋯ &ThinSpace; , r k ] . 设 σ 2 , σ 3 , ⋯ &ThinSpace; , σ k 中 包 含 的 文 字 为 { i r 1 + 1 , i r 1 + 2 , ⋯ &ThinSpace; , i t } , 于是a_1的阶为[r_2,r_3,\cdots, r_k].设\sigma_2,\sigma_3,\cdots,\sigma_k中包含的文字为\lbrace i_{r_1+1},i_{r_1+2},\cdots,i_t \rbrace, a1[r2,r3,,rk].σ2,σ3,,σk{ir1+1,ir1+2,,it},
σ 1 中 的 文 字 为 { i 1 , i 2 , ⋯ &ThinSpace; , i r 1 } . \sigma_1中的文字为\lbrace i_1,i_2, \cdots, i_{r_1} \rbrace. σ1{i1,i2,,ir1}.
若 j = ̸ i l , 1 ≤ l ≤ t , 则 σ 1 ( j ) = a ( j ) = j . 故 σ 1 a 1 ( j ) = a 1 σ 1 ( j ) = j . 若j =\not i_l, 1 \leq l \leq t,则\sigma_1(j) = a(j) = j.故\sigma_1a_1(j) = a_1\sigma_1(j) = j. j≠il,1lt,σ1(j)=a(j)=j.σ1a1(j)=a1σ1(j)=j.
若 j = i l 且 1 ≤ l ≤ r 1 , 则 a 1 ( j ) = j , σ 1 ( j ) = i l ′ , l ′ ≤ r 1 . 因 而 a 1 σ 1 ( j ) = i l ′ = σ 1 a 1 ( j ) . 若j = i_l且1 \leq l \leq r_1,则a_1(j) = j,\sigma_1(j) = i_{l^{\prime}},l^{\prime} \leq r_1.因而a_1\sigma_1(j) = i_{l^{\prime}} = \sigma_1a_1(j). j=il1lr1,a1(j)=j,σ1(j)=il,lr1.a1σ1(j)=il=σ1a1(j).
若 j = i l 且 t ≥ l ≥ r 1 + 1 , 则 σ 1 ( i l ) = i l , a 1 ( i l ) = i l ′ , t ≥ l ′ ≥ r 1 + 1. 故 有 a 1 σ 1 ( j ) = i l ′ = σ 1 a 1 ( j ) . 若j=i_l且t \geq l \geq r_1+1,则\sigma_1(i_l) = i_l,a_1(i_l) = i_{l^{\prime}},t \geq l^{\prime} \geq r_1 + 1.故有a_1\sigma_1(j) = i_{l^{\prime}} = \sigma_1a_1(j). j=iltlr1+1,σ1(il)=il,a1(il)=il,tlr1+1.a1σ1(j)=il=σ1a1(j).
定 理 4.1.3 令 S = { ( 1 &ThickSpace; i ) ∣ 2 ≤ i ≤ n } , 则 S n = ⟨ S ⟩ . {\color{blue}定理4.1.3\quad}令S=\lbrace (1\;i)|2 \leq i \leq n \rbrace,则S_n=\lang S \rang. 4.1.3S={(1i)2in},Sn=S.
证 : 首 先 证 明 任 何 对 换 ( i &ThickSpace; j ) 可 写 成 S 中 元 素 的 积 . 事 实 上 , {\color{blue}证:}首先证明任何对换(i\;j)可写成S中元素的积.事实上, :(ij)S.,
( i &ThickSpace; j ) = ( 1 &ThickSpace; i ) ( 1 &ThickSpace; j ) ( 1 &ThickSpace; i ) . ( 1 ) \qquad (i\;j) = (1\;i)(1\;j)(1\;i).\qquad (1) (ij)=(1i)(1j)(1i).(1)
其 次 , 我 们 用 数 学 归 纳 法 证 明 任 何 轮 换 ( i 1 i 2 ⋯ i r ) 可 写 成 对 换 之 积 , 其次,我们用数学归纳法证明任何轮换(i_1i_2\cdots i_r)可写成对换之积, ,(i1i2ir),
( i 1 i 2 ⋯ i r ) = ( i 1 i r ) ( i 1 i r − 1 ) ⋯ ( i 1 i 2 ) ( 2 ) \qquad (i_1i_2\cdots i_r) = (i_1i_r)(i_1i_{r-1})\cdots(i_1i_2) \qquad (2) (i1i2ir)=(i1ir)(i1ir1)(i1i2)(2)
当 r = 2 时 上 式 显 然 成 立 。 假 设 定 理 对 r − 1 ( r ≥ 3 ) 成 立 , 并 记 a = ( i 1 i 2 ⋯ i r ) , 于 是 有 当r=2时上式显然成立。假设定理对r-1(r\geq 3)成立,并记a = (i_1i_2\cdots i_r),于是有 r=2r1(r3)a=(i1i2ir),
( i 1 i r ) ( i 1 i r − 1 ) ⋯ ( i 1 i 3 ) ( i 1 i 2 ) = ( i 1 i 3 ⋯ i r ) ( i 1 i 2 ) = a ′ (i_1i_r)(i_1i_{r-1})\cdots(i_1i_3)(i_1i_2) = (i_1i_3\cdots i_r)(i_1i_2) = a^{\prime} (i1ir)(i1ir1)(i1i3)(i1i2)=(i1i3ir)(i1i2)=a
当 j = ̸ i k 时 , a ′ ( j ) = j = a ( j ) ; 当j=\not i_k时,a^{\prime}(j) = j = a(j); j≠ik,a(j)=j=a(j);
当 j = i k , k ≥ 3 时 , a ′ ( j ) = ( i 1 i 3 ⋯ i r ) ( j ) = a ( j ) ; 当j = i_k,k \geq 3时,a^{\prime}(j) = (i_1i_3\cdots i_r)(j) = a(j); j=ik,k3,a(j)=(i1i3ir)(j)=a(j);
当 j = i 1 时 , a ′ ( i 1 ) = ( i 1 i 3 ⋯ i r ) ( i 2 ) = i 2 = a ( i 1 ) ; 当j=i_1时,a^{\prime}(i_1)=(i_1i_3\cdots i_r)(i_2) = i_2 = a(i_1); j=i1,a(i1)=(i1i3ir)(i2)=i2=a(i1);
当 j = i 2 时 , a ′ ( i 2 ) = ( i 1 i 3 ⋯ i r ) ( i 1 ) = i 3 = a ( i 2 ) . 当j=i_2时,a^{\prime}(i_2) = (i_1i_3\cdots i_r)(i_1) = i_3 = a(i_2). j=i2,a(i2)=(i1i3ir)(i1)=i3=a(i2).
故 知 式 ( 2 ) 成 立 。 故 任 何 轮 换 可 写 成 S 中 元 素 之 积 . 故知式(2)成立。故任何轮换可写成S中元素之积. (2)S.
最 后 证 明 ∀ a ∈ S n 一 定 可 写 成 轮 换 之 积 , 即 可 写 成 S 中 元 素 之 积 。 最后证明\forall a \in S_n一定可写成轮换之积,即可写成S中元素之积。 aSn,S
设 a ∈ S n , 令 F a ‾ = { j ∣ a ( j ) = ̸ j } . 显 然 有 设a \in S_n,令\overline{F_a} = \lbrace j | a(j) =\not j \rbrace.显然有 aSn,Fa={ja(j)≠j}.
F i d ‾ = ∅ ( 3 ) \qquad \overline{F_{id}} = \empty \qquad (3) Fid=(3)
当 a = ̸ i d 时 , 当a =\not id时, a≠id
∣ F a ‾ ∣ ≥ 2 ( 4 ) \qquad |\overline{F_a}| \geq 2 \qquad (4) Fa2(4)
当 且 仅 当 a 为 对 换 时 , 式 ( 4 ) 中 等 号 成 立 . 下 面 不 妨 设 a = ̸ i d . 我 们 证 明 存 在 轮 换 σ 1 满 足 当且仅当a为对换时,式(4)中等号成立.下面不妨设a =\not id.我们证明存在轮换\sigma_1满足 a(4).a≠id.σ1
F a ‾ = F σ 1 ‾ ∪ F σ 1 − 1 a ‾ F σ 1 ‾ ∩ F σ 1 − 1 a ‾ = ∅ } ( 5 ) \qquad \left. \begin{array} {l} \overline{F_a} = \overline{F_{\sigma_1}} \cup \overline{F_{\sigma_1^{-1}a}} \\ \overline{F_{\sigma_1}} \cap \overline{F_{\sigma_1^{-1}a}} = \empty \end{array} \right\} \qquad (5) Fa=Fσ1Fσ11aFσ1Fσ11a=}(5)
因 a = ̸ i d , 故 由 式 ( 4 ) 知 有 i 1 ∈ F a ‾ , 令 因a =\not id,故由式(4)知有i_1 \in \overline{F_a},令 a≠id,(4)i1Fa,
i 2 = a ( i 1 ) , i 3 = a ( i 2 ) , ⋯ &ThinSpace; , i k = a ( i k − 1 ) . \qquad i_2 = a(i_1), i_3 = a(i_2), \cdots, i_k = a(i_{k-1}). i2=a(i1),i3=a(i2),,ik=a(ik1).
由 于 F a ‾ 是 有 限 集 , 故 存 在 r 使 得 i 1 , i 2 , ⋯ &ThinSpace; , i r − 1 互 不 相 同 , 而 i r = i t , 1 ≤ t ≤ r − 1. 现 证 t = 1. 若 不 然 , 则 有 由于\overline{F_a}是有限集,故存在r使得i_1,i_2,\cdots, i_{r-1}互不相同,而i_r=i_t,1 \leq t \leq r-1.现证t = 1.若不然,则有 Fa,r使i1,i2,,ir1ir=it,1tr1.t=1.,
a ( i t − 1 ) = i t = i r = a ( i r − 1 ) . \qquad a(i_{t-1}) = i_t = i_r = a(i_{r-1}). a(it1)=it=ir=a(ir1).
于 是 于是
i t − 1 = i r − 1 . \qquad i_{t-1} = i_{r-1}. it1=ir1.
即 有 t = r , 矛 盾 , 故 t = 1. 令 σ 1 = ( i 1 i 2 ⋯ i r − 1 ) . 显 然 即有 t = r,矛盾,故t=1.令\sigma_1 = (i_1i_2\cdots i_{r-1}).显然 t=r,,t=1.σ1=(i1i2ir1).
F σ 1 − 1 ‾ = { i 1 , i 2 , ⋯ &ThinSpace; , i r − 1 } ⊆ F a ‾ \qquad \overline{F_{\sigma_1^{-1}}} = \lbrace i_1, i_2, \cdots, i_{r-1} \rbrace \subseteq \overline{F_a} Fσ11={i1,i2,,ir1}Fa
再 令 a 1 = σ 1 − 1 a , 若 l = ̸ F a , 则 l ∉ F σ 1 − 1 ‾ . 故 a 1 ( l ) = l , l ∉ F a 1 ‾ , 因 而 F σ 1 ‾ ⊆ F a ‾ . 再令a_1 = \sigma_1^{-1}a,若l =\not F_a,则l \notin \overline{F_{\sigma_1^{-1}}}.故a_1(l) = l, l \notin \overline{F_{a_1}}, 因而\overline{F_{\sigma_1}} \subseteq \overline{F_a}. a1=σ11a,l≠Fa,l/Fσ11.a1(l)=l,l/Fa1,Fσ1Fa.
于 是 F a 1 ‾ ∪ F σ 1 ‾ ⊆ F a ‾ . 反 之 , 若 l ∉ F a 1 ‾ ∪ F σ 1 ‾ , 则 有 a 1 ( l ) = σ 1 ( l ) = l . 故 a ( l ) = l , 即 l ∉ F a ‾ . 于 是 联 立 式 ( 5 ) 中 第 一 个 式 成 立 . 设 i k ∈ F σ 1 ‾ , 则 有 a 1 ( i k ) = σ 1 − 1 a ( i k ) = σ 1 − 1 σ 1 ( i k ) = i k . 即 i k ∉ F a 1 ‾ . 故 联 立 式 ( 5 ) 中 第 二 式 也 成 立 . 若 a = ̸ σ 1 , 则 F σ 1 − 1 a ‾ = ̸ ∅ . 于是\overline{F_{a_1}} \cup \overline{F_{\sigma_1}} \subseteq \overline{F_a}.反之,若l \notin \overline{F_{a_1}} \cup \overline{F_{\sigma_1}},则有a_1(l) = \sigma_1(l) = l.故a(l) = l,即l \notin \overline{F_a}.于是联立式(5)中第一个式成立.设i_k \in \overline{F_{\sigma_1}},则有a_1(i_k) = \sigma_1^{-1}a(i_k) = \sigma_1^{-1}\sigma_1(i_k) = i_k.即i_k \notin \overline{F_{a_1}}.故联立式(5)中第二式也成立.若a =\not \sigma_1,则\overline{F_{\sigma_1^{-1}a}} =\not \empty. Fa1Fσ1Fa.,l/Fa1Fσ1,a1(l)=σ1(l)=l.a(l)=l,l/Fa.(5).ikFσ1,a1(ik)=σ11a(ik)=σ11σ1(ik)=ik.ik/Fa1.(5).a≠σ1,Fσ11a≠.
再 对 σ 1 − 1 a 用 上 述 方 法 , 可 得 另 一 轮 换 σ 2 与 F σ 2 − 1 σ 1 − 1 a ‾ ⊂ F σ 1 − 1 a ‾ ⊂ F a ‾ . 由 于 F a ‾ 是 有 限 的 , 最 后 有 n 使 得 再对\sigma_{1}^{-1}a用上述方法,可得另一轮换\sigma_2与\overline{F_{\sigma_2^{-1}\sigma_1^{-1}a}} \subset \overline{F_{\sigma_1^{-1}a}} \subset \overline{F_a}.由于\overline{F_a}是有限的,最后有n使得 σ11a,σ2Fσ21σ11aFσ11aFa.Fan使
F σ n − 1 σ n − 1 − 1 ⋯ σ 1 − 1 a ‾ = ∅ . \qquad \overline{F_{\sigma_n^{-1}\sigma_{n-1}^{-1}\cdots \sigma_1^{-1}a}} = \empty. Fσn1σn11σ11a=.
即 σ n − 1 σ n − 1 − 1 ⋯ σ 1 − 1 a = i d . 因 而 即\sigma_n^{-1}\sigma_{n-1}^{-1}\cdots \sigma_1^{-1}a = id.因而 σn1σn11σ11a=id.
a = σ 1 σ 2 ⋯ σ n . \qquad a = \sigma_1\sigma_2\cdots\sigma_n. a=σ1σ2σn.
即 S n 中 任 意 元 素 可 标 为 轮 换 之 积 , 故 定 理 成 立 。 即S_n中任意元素可标为轮换之积,故定理成立。 Sn
仔 细 分 析 定 理 4.1.3 可 知 σ 1 , σ 2 , ⋯ &ThinSpace; , σ n 是 很 容 易 求 出 来 的 , 仔细分析定理4.1.3可知\sigma_1,\sigma_2,\cdots,\sigma_n是很容易求出来的, 4.1.3σ1,σ2,,σn,
且 σ 1 , σ 2 , ⋯ &ThinSpace; , σ n 是 两 两 不 相 交 的 . 有 下 面 推 论 . 且\sigma_1,\sigma_2,\cdots,\sigma_n是两两不相交的.有下面推论. σ1,σ2,,σn..
推 论 1 若 把 S n 中 的 幺 元 i d 记 为 长 为 1 的 轮 换 , 即 i d = ( i ) . 则 ∀ a ∈ S n , 一 定 可 写 成 不 相 交 的 轮 换 之 积 . {\color{blue}推论1\quad}若把S_n中的幺元id记为长为1的轮换,即id=(i).则\forall a \in S_n,一定可写成不相交的轮换之积. 1Snid1,id=(i).aSn,.
推 论 2 奇 置 换 可 表 示 为 奇 数 个 对 换 之 积 , 偶 置 换 可 以 表 示 为 偶 数 个 对 换 之 积 . {\color{blue}推论2\quad}奇置换可表示为奇数个对换之积,偶置换可以表示为偶数个对换之积. 2,.
这 是 因 为 对 换 ( i &ThickSpace; j ) 是 奇 置 换 . 这是因为对换(i\;j)是奇置换. (ij).

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值