自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(25)
  • 收藏
  • 关注

原创 模型开发部署全流程

数据集准备根据自己任务去寻找合适的数据集,e接着进行对应数据的标注,如果是目标检测的,需要将图片放在JPEGImages文件夹唉中,标签放在Annotations文件夹中,这里要注意,吧数据集标注成coco或者voc格式,可以帮助后期剩下很多读取数据集和分割数据集的时间接着使用paddlex --split_dataset --fromat VOC --dataset_dir 数据集路径 --val_value 0.2 --test_value 0.1命令对数据集进行划分,最后会生成train,te.

2021-08-10 16:19:17 1369

原创 地平线与jetson nano部署

地平线基本流程就是飞桨模型训练->使用paddle2onnx转化成onnx模型->进行模型推理->模型量化->板子上测试假设,我们已经训练好了一个paddle的模型,现在使用pip install paddle2onnx onnx安装paddle2onnx和onnx两个包,在进行模型转化的时候一定要把BCHW的B设置为1# 定义输入数据input_spec = paddle.static.InputSpec(shape=[1, 3, 224, 224], dtype='

2021-08-06 09:47:01 518

原创 paddle在Edgeboard与安卓上部署

Edgboard:PaddleLite进行推理,支持Paddle模型的推理部署(不需要模型转化过程)支持c++和hpyton的接口,提供ZU3,ZU5,ZU9推荐使用Paddlx进行模型训练,其训练出的模型会有API进行模型导出图像前处理from paddlex.cls import transformstrans = transforms.Compose([在数组中输入想要的数据前处理方式,比如归一化,随机裁剪等。])数据加载图像分类可以使用pdx.datasets.ImageNet

2021-08-05 09:21:39 949

原创 训练方式调参技巧

一、模型选择回归任务:人脸关键点检测,又要速度,又要精度场景任务:昆虫检测,不会瞬时移动,但是数量要清楚,所以应该选择精度比较高的模型。paddlex调用模型的api:paddlex.det.模型名称,具体可以看api文档人像分割,比如会议室换背景,需要速度块,但是精度可以不用太高PaddleX文字识别,PaddleHub,能用就直接用,PaddleX用于训练的多二、模型训练常用优化器adam,GSD,也有超参数可以进行优化,比如学习率使用paddlex进行训练的方式

2021-07-31 16:38:57 1231

原创 数据处理与获取技巧

一。数据集处理流程数据集获取数据集获取平台:Kaggle,天池,DataFountain,coco,科大讯飞,具体获取方式就是上他们得官网搜索你想要的数据集的关键字即可。、对图片进行清洗,与我们任务目标不符合的数据集,比如分割任务的标签文件过于粗糙,可以进行舍弃,这一部分一般是人工进行筛选有些数据集已经有了标注,但是有些数据是没有进行吧标注的,所以对于没有标注的数据集还需要自己进行标注图片数据预处理的方法,一般是标准化,标准化由中心化和归一化构成,可以理解为中心化,将原本中心不在原

2021-07-31 16:36:36 256

原创 第一课:那些让拍案叫绝的方案是怎么想出来的

创意就是将现有的想法进行组合的过程。人眼控制弹板进行弹球,使用人脸躲避四处移动的点,脸部不会因遮挡和远离而影响游戏的公平性通过使用paddlehub从人的图像中获取脸部关键点生成表情,熊猫头使用人脸检测的方式,将原本的图像弄掉,然后使用关键点表情和熊猫头做一个结合,不过要记录好熊猫脸部的位置,同时也要对人脸进行一个resize。目前调色方案还存在一定的问题,最好的效果就是使用直方图处理。以终为始——场景驱动项目一个想法,结合实际问题,生产关于一个场景的想法尝试验证,可以从易到难,从最属性的思路做

2021-07-27 17:08:29 129

原创 数据库模式分解(应该比较易懂吧)

数据库模式分解部分函数依赖函数依赖的确定1对1的关系时,有两个函数依赖1对多时,有一个函数依赖多对多时,没有函数依赖函数依赖类型右边不为左边的子集{非平凡函数依赖(A−>B),yes平凡函数依赖(AB−>B),no左边有子集能决定右边{部分函数依赖,yes完全函数依赖,no右边不为左边的子集\begin{cases}非平凡函数依赖(A->B),yes \\平凡函数依赖(AB->B),no\end{cases}\\左边有子集能决定右边\begin{cas

2021-04-29 09:57:27 7310 6

原创 axios向后端请求数据

最近接触web不久,然后啥都没弄懂就结课了,感觉做web前端最重要的是什么呢,其实我觉得应该不是语法怎么写,应该是各个功能之间的衔接和实现。不说了,得自救了,讲一下本次学习的重点。axios的使用我用的是vue3啊安装默认大家都用node.js啊,安装挺简单的,使用就可以了npm install axios -S 使用方式先创建js文件,然后引入axiosimport axios form 'axios;接着就要通过这个index文件向vue文件中暴露(export)请求函数,以

2021-04-25 12:22:48 1167

原创 [数据恢复] arch系列linux误删数据怎么办?

最近在整理git的东西,好不容易整好了仓库,然后发现自己的文件被误删了,崩溃了!这不,文件还没上传就没了。我不能接受恢复神器testdisk安装testdisksudo pacman -S testdisk然后使用管理权限进入testdisksudo testdisk进去之后长这样:这三个选项选哪一都行啊,反正我选的是第一个进去之后选择误删文件的磁盘,点击回车就行继续回车这里选择 [Advanced]Filesystem Utils他会显示你挂载硬盘的所有分区,选择你误删的

2021-04-23 00:06:34 472

原创 数据库基本语句小结

选择数据库USE sql_store;SELECT(选择)语句-- -- 不显示重复的数值select distinct statefrom customers-- 选择使用什么列,*是全部使用,填写列的名字,展示会按照输入的顺序-- -- 选择时可以写成数学公式 SELECT first_name, last_name, points, points*10+100 as "real_money"-- 从哪个表里FROM customers-- 筛

2021-02-28 09:55:14 204 1

原创 Salient Obejct Detection(SOD)综述

论文链接:https://arxiv.org/abs/2008.00230仓库链接:https://github.com/taozh2017/RGBD-SODsurvey介绍显著目标检测(Salient Obejct Detection)是模拟人类视觉感知系统来定位场景中最吸引人的目标,已被广泛应用于各种计算机视觉任务中。显著目标检测在现实中的应用有:立体匹配(stereo matching)、图像理解(img understanding)、共显著性检测(co-saliency detection)

2021-02-06 16:15:00 6056 3

原创 抠图算法Background Matting:The world is your green screen

背景介绍抠图是照片编辑和视觉效果中使用的标准技术,在现有的抠图算法中,要想抠出一个好的maks一般需要三分图(trimap由前景,背景,未知片段组成)。虽然现在也有不需要三分图的算法正在发展,但是这种不需要三分图的算法,在抠图的质量与有三分图的算法没有可比性。因此,在本算法中除了需要原图片之外,还需要一张额外的背景图片。抠图算法的公式I=αF+(1−α)BI = \alpha F+(1-\alpha)BI=αF+(1−α)BFFF:前景图(foreground),BBB:背景图(backgroun

2021-01-31 11:09:17 2963 4

原创 度量学习的损失函数

一、什么是度量学习度量学习和传统的表征学习不太一样,传统表征学习着重于分类问题,他计算的是概率。在度量学习中,他着重的是图片间的关系,计算的是图片的距离常见的距离有:欧式距离:dI1,I2=∣∣fI1−fI2∣∣2d_{I_1,I_2} = ||f_{I_1}-f_{I_2}||_2dI1​,I2​​=∣∣fI1​​−fI2​​∣∣2​余弦距离:dI1,I2=1−fI1−fI2∣∣fI1∣∣2∣∣fI2∣∣2d_{I_1,I_2} = 1 - \frac {f_{I_1}-f_{I_2}}{||f_

2020-09-09 11:26:20 741

原创 模型的前端压缩

一、知识蒸馏利用迁移学习的方法,将一个复杂精度高的老师模型,与一个小但是目标与老师精度一样高的学生模型进行结合。1. 对整个网络进行知识蒸馏知识蒸馏的简图:数据生成器就是我们框架产生的batch,我们将图片输入到教师模型和学生模型中,先计算出教师模型的loss然后通过教师模型的loss引导学生模型的loss,从而使学生模型的loss下降。下面是详细的图解:将训练集图片分别放入到老师网络(已经训练好的)和学生网络(未训练)中,获得他们预测的概率。我们的目的就是要使得我们学生网络的预测结果与我们学

2020-09-03 17:16:15 382

原创 TensorFlow2初探——认识tensor

一、什么是Tensortensor翻译成中文就是张量,本意上是指任何维度大于2的变量,在tensorflow中,不论什么维度,都可以叫做tensor在一般的理解中,我们把维度为0的数据称为元素,维度为1的数据称为向量,维度为2的数据称为矩阵,维度为2以上的数据称为张量二、如何创建Tensortf.constant(数据)就可以创建一个tensor,tensor可以是任意的数据类型,在创建过程中,我们可以使用dtype=的参数来定义这个tensor的变量类型,但是要注意定义的类型与我们的数据类型是否相

2020-08-22 16:44:02 490

原创 数学建模——概率论统计模型的基本理论

一、蒙特卡洛方法蒙特卡洛的一般原理:处理缺乏实验数据的问题,一般会用蒙特卡洛方法来产生所需要的实验数据。蒙特卡洛方法结题的基本步骤:确定所要模拟的目标以及实现这些目标的随机变量,一般情况下,目标就是这些随机变量的期望找到原问题中随机变量的分布规律大量抽取随机样本以模拟原问题的随机量求出随机样本的样本平均值二、马尔科夫方法马尔科夫过程:马尔科夫过程的特性在于未来的演变不依赖于它过去的演变,这种性质被称为无后效性转移概率矩阵:马尔科夫链{Xn,n≥0}\left\{X_{n}, n

2020-07-30 11:28:10 2820

原创 数学建模——数据分析方法

一、常见数据分析软件Excel(office三件套之一)、R语言、Eviews、origin(图形分析工具)、SPSS(统计分析与数据挖掘)MATLAB(墙裂推荐)、python(墙裂推荐)、SAS二、统计性描述均值(mean):xˉ=1n∑i=1nxi\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}xˉ=n1​i=1∑n​xi​方差(var)、均方差(std): S2=1n−1∑i=1n(xi−xˉ)2,S=1n−1∑i=1n(xi−xˉ)2\quad S^{2

2020-07-29 19:03:01 11164

原创 数学建模——图论

图论一、七桥问题:二、图论的基本概念:三、图论的基本问题及算法一、七桥问题: 欧拉回路:如果每一个点所谅解的桥都是偶数座,则从任意一陆地出发,必能通过每座桥恰好一次回到出发地二、图论的基本概念:无向图:没有方向的图记为:G = (V,E)有向图:他的路线是有方向的子图:保留所有的点,去掉一部分的边网路图:* 各边赋予一定的物理量,如果是距离就叫做网络图或者赋权图* 所赋予的物理量叫做权* 权可以是:距离,时间,成本初等链:定点和边相互交替出现的序列。路:内部点不相同

2020-07-27 20:44:22 2882

原创 Linux操作系统初探——基本操作指令(二)

显示当前目录的文件信息ls他会展示我们当前目录的信息使用ls -l会显示更详细的信息这里第三列表示的是当前用户,然后r是表示可读,w表示可写,x表示可执行使用ls -aa是ALL的意思,表示的是全部的文件,隐藏文件都给你显示出来使用ls -al既会显示隐藏文件又会显示其文件信息...

2020-07-08 22:15:30 145

原创 Linux操作系统初探——芜湖(Qi Fei)(一)

Linux安装下载包的话我建议直接微信公众号搜索,软件安装管家,然后在上面找VMware和ubuntu(在这个上面的链接,ubantu的下载中自带一个14的VMware,有需要自己选定VMware版本的话可以找对应的版本,当然最高也就15版本),按着他给的教程进行安装,就能实现VMware的白嫖 按照他的教程装好就行了挺无脑的。虚拟机创建我们进入VMware界面后我们就会看到这里有一个创建新的虚拟机选项可以选择一下如果没什么特殊需求的话点推荐就行,不过这里演示一下自定义的安装方式这里可以选择虚拟

2020-07-08 15:27:05 253

原创 深度学习初探以及计算机视觉相关技术

深度学习初探以及计算机视觉相关技术前言本人从2个多月前开始接触了深度学习的内容,从最初的机器学习的经典算法,再到复杂的神经网络过程,发现深度学习的优势逐渐体现出来。对于普通的数据型数据机器学习的算法或许会比较合适,但是对于我们多维度的数据如(图片,音频等),机器学习的算法在这些应用上的效果没有深度学习那么明显。本人并没有多专业的导师进行指导,只是凭着学长们的经验,一步一步的自主学习,对于网上哪些老生常谈文章也看过一部分,一路磕磕碰碰走到现在,对计算机视觉这方面的技术术语也没有很深刻地理解。个人声明:本

2020-07-07 17:15:34 288

原创 吴恩达深度学习——序列模型

吴恩达深度学习——序列模型一、定义序列模型的数学符号二、循环神经网络1.对于序列模型为什么不采用标准的神经网络进行处理呢?2.循环神经网络的结构3.循环神经网络的损失函数4.不同类型的循环神经网络三、语言模型与序列生成四、GRU(Gated Recurrent或者叫做门控循环)单元五、长短期记忆单元(LSTM)六、双向循环神经网络(BRNN)七、深度循环神经网络(Deep RNN)引言:序列模型可以是一段音频,一段视频,一句话等等!一、定义序列模型的数学符号对于输入x,我们通常使用x<n>

2020-06-19 08:41:30 606

原创 吴恩达深度学习——人脸识别和风格迁移

.吴恩达深度学习——人脸识别和风格迁移一、人脸识别1、人脸验证2、人脸识别3、一次学习4、Siamese 网络5、三元组损失函数(triplet loss function)6、面部验证与二分类二、风格迁移1、什么叫做风格迁移?2 、深度卷积网络究竟在学习什么?3、代价函数内容代价函数风格代价函数一、人脸识别在人脸识别的相关文献中,人们通常提到人脸验证和人脸识别。1、人脸验证我们只用判断图片中的人是不是我们要判断的人,只有0和1一个两个选择,相当于1对1的问题2、人脸识别如果我们的验证系统达到

2020-06-06 14:52:18 1174

原创 pytorch入门——个人总结

PyTorch入门PyTorch入门一、Pytorch的tensor类型二、pytorch的生成tensor数组三、pytorch的运算四、pytorch.autofrad()中的Variable对象五、pytorch自定义模型六、pytorch损失函数定义(lost function)七、pytorch.optim参数自动优化八、 torchvision中的datasets和trainsforms九、pytorch装载数据集(data_train为例)十、 模型导入与修改十一、OS文件操作十二、从外部导入

2020-06-02 15:48:31 1028

原创 吴恩达深度学习——目标检测学习

吴恩达深度学习——目标检测学习目标检测概述一、 目标定位:1. 边界界框参数2. 输出结果定义3. 损失函数定义二、 特征点检测三、目标检测1. 基于滑动窗的目标检测算法2. 在卷积层中应用滑动窗目标检测3. YOLO算法(一部分)四、检测算法运作1.交并比2. 非极大值抑制五、anchor box六、YOLO算法七、候选区域目标检测概述在最初接触的计算机视觉中,我们对图片进行的是图片分类,但是我们对图片中物体的位置是无从探知的,于是我们就有了一个想法,就是将物体的位置用边界框展示出来,这就是目标检测

2020-05-30 12:14:23 1131

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除