百度AI达人创造营
文章平均质量分 58
ZeroRains
初入深度学习,主攻计算机视觉的图像分割方向,希望能够得到一些指导和交流。
展开
-
模型开发部署全流程
数据集准备根据自己任务去寻找合适的数据集,e接着进行对应数据的标注,如果是目标检测的,需要将图片放在JPEGImages文件夹唉中,标签放在Annotations文件夹中,这里要注意,吧数据集标注成coco或者voc格式,可以帮助后期剩下很多读取数据集和分割数据集的时间接着使用paddlex --split_dataset --fromat VOC --dataset_dir 数据集路径 --val_value 0.2 --test_value 0.1命令对数据集进行划分,最后会生成train,te.原创 2021-08-10 16:19:17 · 1373 阅读 · 0 评论 -
地平线与jetson nano部署
地平线基本流程就是飞桨模型训练->使用paddle2onnx转化成onnx模型->进行模型推理->模型量化->板子上测试假设,我们已经训练好了一个paddle的模型,现在使用pip install paddle2onnx onnx安装paddle2onnx和onnx两个包,在进行模型转化的时候一定要把BCHW的B设置为1# 定义输入数据input_spec = paddle.static.InputSpec(shape=[1, 3, 224, 224], dtype='原创 2021-08-06 09:47:01 · 520 阅读 · 0 评论 -
paddle在Edgeboard与安卓上部署
Edgboard:PaddleLite进行推理,支持Paddle模型的推理部署(不需要模型转化过程)支持c++和hpyton的接口,提供ZU3,ZU5,ZU9推荐使用Paddlx进行模型训练,其训练出的模型会有API进行模型导出图像前处理from paddlex.cls import transformstrans = transforms.Compose([在数组中输入想要的数据前处理方式,比如归一化,随机裁剪等。])数据加载图像分类可以使用pdx.datasets.ImageNet原创 2021-08-05 09:21:39 · 952 阅读 · 0 评论 -
训练方式调参技巧
一、模型选择回归任务:人脸关键点检测,又要速度,又要精度场景任务:昆虫检测,不会瞬时移动,但是数量要清楚,所以应该选择精度比较高的模型。paddlex调用模型的api:paddlex.det.模型名称,具体可以看api文档人像分割,比如会议室换背景,需要速度块,但是精度可以不用太高PaddleX文字识别,PaddleHub,能用就直接用,PaddleX用于训练的多二、模型训练常用优化器adam,GSD,也有超参数可以进行优化,比如学习率使用paddlex进行训练的方式原创 2021-07-31 16:38:57 · 1233 阅读 · 0 评论 -
第一课:那些让拍案叫绝的方案是怎么想出来的
创意就是将现有的想法进行组合的过程。人眼控制弹板进行弹球,使用人脸躲避四处移动的点,脸部不会因遮挡和远离而影响游戏的公平性通过使用paddlehub从人的图像中获取脸部关键点生成表情,熊猫头使用人脸检测的方式,将原本的图像弄掉,然后使用关键点表情和熊猫头做一个结合,不过要记录好熊猫脸部的位置,同时也要对人脸进行一个resize。目前调色方案还存在一定的问题,最好的效果就是使用直方图处理。以终为始——场景驱动项目一个想法,结合实际问题,生产关于一个场景的想法尝试验证,可以从易到难,从最属性的思路做原创 2021-07-27 17:08:29 · 130 阅读 · 0 评论 -
数据处理与获取技巧
一。数据集处理流程数据集获取数据集获取平台:Kaggle,天池,DataFountain,coco,科大讯飞,具体获取方式就是上他们得官网搜索你想要的数据集的关键字即可。、对图片进行清洗,与我们任务目标不符合的数据集,比如分割任务的标签文件过于粗糙,可以进行舍弃,这一部分一般是人工进行筛选有些数据集已经有了标注,但是有些数据是没有进行吧标注的,所以对于没有标注的数据集还需要自己进行标注图片数据预处理的方法,一般是标准化,标准化由中心化和归一化构成,可以理解为中心化,将原本中心不在原原创 2021-07-31 16:36:36 · 256 阅读 · 0 评论