感谢:http://www.cnblogs.com/biyeymyhjob/archive/2012/09/28/2707343.html
加一点自己理解
编辑距离概念描述:
编辑距离,又称Levenshtein距离,是指两个字串之间,由一个转成另一个所需的最少编辑操作次数。许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。
例如将kitten一字转成sitting:
- sitten (k→s)
- sittin (e→i)
- sitting (→g)
俄罗斯科学家Vladimir Levenshtein在1965年提出这个概念。
问题:找出字符串的编辑距离,即把一个字符串s1最少经过多少步操作变成编程字符串s2,操作有三种,添加一个字符,删除一个字符,修改一个字符
解析:
首先定义这样一个函数——edit(i, j),它表示第一个字符串的长度为i的子串到第二个字符串的长度为j的子串的编辑距离。
显然可以有如下动态规划公式:
- if i == 0 且 j == 0,edit(i, j) = 0
- if i == 0 且 j > 0,edit(i, j) = j
- if i > 0 且j == 0,edit(i, j) = i
- if i ≥ 1 且 j ≥ 1 ,edit(i, j) == min{ edit(i-1, j) + 1, edit(i, j-1) + 1, edit(i-1, j-1) + f(i, j) },当第一个字符串的第i个字符不等于第二个字符串的第j个字符时,f(i, j) = 1;否则,f(i, j) = 0。
0 | f | a | i | l | i | n | g | |
0 | ||||||||
s | ||||||||
a | ||||||||
i | ||||||||
l | ||||||||
n |
0 | f | a | i | l | i | n | g | |
0 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
s | 1 | |||||||
a | 2 | |||||||
i | 3 | |||||||
l | 4 | |||||||
n | 5 |
计算edit(1, 1),edit(0, 1) + 1 == 2,edit(1, 0) + 1 == 2,edit(0, 0) + f(1, 1) == 0 + 1 == 1,min(edit(0, 1),edit(1, 0),edit(0, 0) + f(1, 1))==1,因此edit(1, 1) == 1。 依次类推:
0 | f | a | i | l | i | n | g | |
0 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
s | 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
a | 2 | 2 | ||||||
i | 3 | |||||||
l | 4 | |||||||
n | 5 |
edit(2, 1) + 1 == 3,edit(1, 2) + 1 == 3,edit(1, 1) + f(2, 2) == 1 + 0 == 1,其中s1[2] == 'a' 而 s2[1] == 'f'‘,两者不相同,所以交换相邻字符的操作不计入比较最小数中计算。以此计算,得出最后矩阵为:
0 | f | a | i | l | i | n | g | |
0 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
s | 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
a | 2 | 2 | 1 | 2 | 3 | 4 | 5 | 6 |
i | 3 | 3 | 2 | 1 | 2 | 3 | 4 | 5 |
l | 4 | 4 | 3 | 2 | 1 | 2 | 3 | 4 |
n | 5 | 5 | 4 | 3 | 2 | 2 | 2 | 3 |
状态转移,从edit(i, j) 三个方向转来
edit(i-1, j) + 1, edit(i, j-1) + 1 表示插入或删除一个字符
edit(i-1, j-1) + f(i, j) f(i,j)=0 表示不替换 f(i,j)=1表示替换1次
算是一个DP实例
#include "bits/stdc++.h"
using namespace std;
const int N=1e3+5;
int dp[N][N];
char str1[N],str2[N];
int main()
{
int len1,len2;
while(scanf("%s%s",str1,str2)!=EOF){
len1=strlen(str1);
len2=strlen(str2);
for(int i=0;i<=len1;i++){
dp[i][0]=i;
}
for(int i=0;i<=len2;i++){
dp[0][i]=i;
}
for(int i=1;i<=len1;i++){
for(int j=1;j<=len2;j++){
dp[i][j]=min(dp[i-1][j]+1,dp[i][j-1]+1);
dp[i][j]=min(dp[i][j],dp[i-1][j-1]+(str1[i-1]!=str2[j-1]));
}
}
for(int i=0;i<=len1;i++){
for(int j=0;j<=len2;j++){
printf("%d ",dp[i][j]);
}
puts("");
}
printf("%d\n",dp[len1][len2]);
}
return 0;
}
我们来看一个实际应用。现代搜索技术的发展很多以提供优质、高效的服务作为目标。比如说:baidu、google、sousou等知名全文搜索系统。当我们输入一个错误的query="Jave" 的时候,返回中有大量包含正确的拼写 "Java"的网页。当然这里面用到的技术绝对不会是我们今天讲的怎么简单。但我想说的是:字符串的相似度计算也是做到这一点的方法之一。
在信息检索领域的应用我们在文章开始的时候就提到了。另外,编辑距离在自然语言文本处理领域(NLP)中是计算字符串相似度的重要方法。一般而言,对于中文语句的相似度处理,我们很多时候都是将词作为一个基本操作单位,而不是字(字符)。