数仓工具—Hive表的基本操作(3)

本文介绍了Hive中的表操作,包括创建表、拷贝表、查看表结构、删除表及修改表的各种细节,如重命名、增删分区和列,以及表属性的修改。此外,还讲解了数据的导入与导出,如从HDFS和本地文件系统加载数据,以及数据的导出操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 创建表

create table语句遵从sql语法习惯,只不过Hive的语法更灵活。例如,可以定义表的数据文件存储位置,使用的存储格式等。

简单一点就是这样的CREATE TABLE pokes (foo INT, bar STRING); 除了必要的信息外,其他的都可以使用默认的信息

分区表

create table if not exists test.user1(
name string comment 'name',
salary 
Hadoop Hive 是构建在 Hadoop 生态系统上的库基础设施,它提供了一种类似于 SQL 的查询语言,用于处理和分析存储在 Hadoop 分布式文件系统(HDFS)中的大规模据。 Hive 的基本原理如下: 1. 据存储:Hive据以的形式存储在 HDFS 上,据可以是结构化、半结构化或非结构化的。Hive 定义包含的结构(例如列和据类型)以及据的存储位置。 2. 元据管理:Hive 使用元据来管理之间的关系。元据包括的结构、分区信息、的存储位置等。Hive 的元据可以使用自带的 Derby 据库或者外部据库(如 MySQL)进行存储。 3. 查询优化与执行:Hive 提供了类似于 SQL 的查询语言 HiveQL,用户可以使用 HiveQL 编写查询语句。当用户提交查询时,Hive 会进行查询优化,生成一个逻辑执行计划,并将其转换为 MapReduce 作业或 Tez 任务来执行。 4. 据转换与计算:Hive 支持用户定义的函(UDF)和自定义聚合函(UDAF),用户可以使用这些函来进行据转换和计算。Hive 还提供了一些内置函,用于常见的据操作和处理。 5. 据分区与分桶:Hive 支持据的分区和分桶,可以根据某个列的值将据划分为多个分区,或者根据某个列的哈希值将据划分为多个桶。这样可以提高查询性能和据处理效率。 通过上述原理,Hive 提供了一种方便的方式来处理和分析大规模据,并且能够与其他 Hadoop 生态系统工具(如Hadoop MapReduce、HBase等)进行无缝集成。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不二人生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值