大模型实战—Text2SQL

大模型实战—Text2SQL

Text2SQL或Chat2SQL工具将自然语言或问题转换为SQL查询。想象一下让ChatGPT为你编写优美、正确且有用的SQL查询!

img

这些工具最初旨在弥合非技术用户和数据库之间的差距,通过允许他们使用自然语言与数据库交互,降低访问和分析数据的障碍。但随着AI模型的进步,这些工具现在支持更高级的功能,如处理复杂查询、连接多个表,甚至支持自然语言对话。

它们还可以通过自动化生成SQL查询的过程来提高生产力,从而节省时间和精力。

在本月的Star History月刊中,我们编制了一系列开源Text2SQL工具。

  • Chat2DB
  • SQL Chat
  • Vanna
  • DuckDB-NSQL
  • Langchain
  • Awesome Text2SQL

img

Chat2DB

Chat2DB旨在成为一个从一开始就融入AI能力的通用SQL客户端和报告工具。它支持连接到包括MySQL、Postgres、Oracle、SQL Server、SQLite、ClickHouse等在内的少数数据库。

  • 19
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
基于大型模型Text-to-SQL 微调是一种通过使用已训练好的模型来改进自然语言到结构化查询语言(SQL)的转换的过程。以下是一个实战教程,用于说明如何进行这种微调。 步骤1:数据收集 首先,我们需要收集充足的训练数据。这些数据应该包括自然语言问题和相应的 SQL 查询。可以使用现有的数据库或生成人为标注的数据集。确保训练数据能够覆盖不同类型的查询和问题。 步骤2:选择基准模型 选择一个已经在大规模数据集上进行预训练的模型。BERT、RoBERTa 或 GPT 等模型都是很好的选择。这些模型已经在大型语料库上进行了预训练,具有很好的语言理解能力。 步骤3:微调模型 使用收集到的数据集,在基准模型上进行微调。将自然语言问题和 SQL 查询作为输入,并通过微调模型来预测相应的 SQL 查询。这个过程是一个监督学习任务,通过最小化预测结果与真实 SQL 查询之间的差异来训练模型。 步骤4:评估模型 使用一组预留的测试数据,评估微调后的模型的性能。计算模型的准确率、召回率和 F1 分数等指标,以了解模型的效果。如果模型效果不佳,可能需要重新调整模型架构或收集更多的训练数据。 步骤5:部署模型 一旦模型在测试集上表现良好,可以部署它来处理真实的自然语言问题。将自然语言问题输入模型,并获得相应的 SQL 查询,该查询可以用于与数据库进行交互。部署可以在服务器或云上完成。 步骤6:持续改进 持续监测模型的性能,并根据实际使用情况进行改进。收集用户的反馈和错误报告,并使用这些信息来更新模型以提高其准确性和可靠性。 这个实战教程提供了一个基于大模型Text-to-SQL 微调的指南。通过选择合适的模型、数据收集、微调、评估和持续改进,可以建立一个高性能的自然语言到结构化查询语言的转换模型
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不二人生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值