后缀数组的实现(转帖)

  我在前面一篇文章中已经概要地讲了后缀数组的基本理论依据,下面结合一个 ACM/ICPC 竞赛题目来说说后缀数组的简单应用。我们先来实现后缀数组 O( nlog n) 的构造算法。我曾经在老的博客上写过一个比较丑陋的后缀数组构造算法,我在产生写这两篇文章的想法时,有去网上搜了一下,看了别人的一些实现和一些以前留下的论文,现对之前的算法进行优化,使其变得比较美观一些 :-)
  我的构造算法用了O( 4n)的空间复杂度,这个和Udi Manber & Gene Myers的论文中提到的O(
2n)的空间复杂度还是有差距的,但是考虑如果按照他们的算法写出来,那么代码必然更长更臭(我之前那个算法就是受了他们思想的很大影响才造就了其丑陋程度),所以还是牺牲一点空间吧。此外,我还看到过几个空间为 O( 2n) 而且比一般O( nlog n) 快的算法,但是代码和思想都非常复杂,不利于掌握。

  定义一种类型:

typedef unsigned char  uchar;

  后缀数组构造算法:

void CreateSuffixArray(uchar* szText,
        int L, int** _S, int** _R, int** _T1, int** _T2)
{
    int i, h, h2, *T, *S1, *S2, *R, *B;

    S1 = *_S;       // h阶后缀数组
    S2 = *_T1;      // 2h阶后缀数组
    R = *_R;        // h阶Rank数组
    B = *_T2;       // 某个桶空余空间尾部的索引,兼任2h阶Rank数组

    // 花O(n)的时间对h = 1进行计数排序
    for(i = 0; i < 256; i++)
        B[i] = 0;
    for(i = 0; i < L; i++)
        B[szText[i]]++;
    for(i = 1; i < 256; i++)
        B[i] += B[i - 1];
    for(i = 0; i < L; i++)
        S1[--B[szText[i]]] = i;

    // 计算Rank(1),因为仅仅是1阶的Rank,所有有并列的
    for(R[S1[0]] = 0, i = 1; i < L; i++)
    {
        if(szText[S1[i]] == szText[S1[i - 1]])
            R[S1[i]] = R[S1[i - 1]];
        else
            R[S1[i]] = R[S1[i - 1]] + 1;
    }

    // log(n)趟O(n)的倍增排序
    // SA(h) => Rank(h) => SA(2h) => Rank(2h) => ...

    for(h = 1; h < L && R[S1[L - 1]] < L - 1; h <<= 1)
    {
        // 计算Rank(h)相同的后缀形成的h桶尾部的索引
        // 即有多少个后缀的h前缀相同,它们被放在一个桶中
        for(i = 0; i < L; i++)
            B[R[S1[i]]] = i;

        // 求SA(2h)
        // 在同一个h桶中,所有的后缀的h前缀肯定相同,
        // 那么比较他们的2h前缀,只要比较其2h前缀后半的
        // 长度为h的串即可,而这个串恰恰是后面某个后缀的
        // h前缀,所以我们逆向遍历有序的SA(h),
        // 将S1[i] - h号前缀放到它所在桶的最后一个空位置,
        // 同时,桶尾前进一个位置,这样即形成了2h桶排序
        for(i = L - 1; i >= 0; i--)
            if(h <= S1[i])
                S2[B[R[S1[i] - h]]--] = S1[i] - h;

        // 对于长度不超过h的最后几个后缀,由于在h阶段
        // 它们每个实际上都已经独立分桶了(长度为h的也是)
        // 而且他们的桶中有且仅有一个元素,
        // 所以只要直接复制他们h阶段的SA值就可以了
        // 同时,由于采用滚动数组,所以S2中“残留”了
        // h/2个有效的数据,所以最终我们只需复制h/2个数据
        for(i = L - h, h2 = L - (h >> 1); i < h2; i++)
            S2[B[R[i]]] = i;

        T = S1; S1 = S2; S2 = T;

        // 计算Rank(2h)
        // 2h阶段是否要分桶只需看相邻两个2h前缀前后两半
        // h前缀是否全部h阶相等
        for(B[S1[0]] = 0, i = 1; i < L; i++)
        {
            // 这里不用考虑S1[i] + h会越界
            // 如果i达到了S1[i] + h越界的数值,
            // 那么前面一个条件显然不会满足了
            // 因为此时i前缀肯定已经独立分桶了
            if(R[S1[i]] != R[S1[i - 1]] ||
                R[S1[i] + h] != R[S1[i - 1] + h])
            {
                B[S1[i]] = B[S1[i - 1]] + 1;
            }
            else
                B[S1[i]] = B[S1[i - 1]];
        }

        T = B; B = R; R = T;
    }

    if(*_S != S1)
        *_S = S1, *_T1 = S2;
    if(*_R != R)
        *_R = R, *_T2 = B;
}

  介绍一个重要概念:LCP!LCP是Longest Common Prefix的缩写,即最长公共前缀,表示某个串从第一个字符开始对应位置字符相同的连续的位置数。比如,后缀abcda和后缀abcca的LCP就是3。我们将后缀数组中连续的两个后缀A i-1和A i的LCP称为A i的Height,即Height(i) = LCP(j , j - 1),并规定A SA[0]的Height为0。那么很显然,后缀数组某个区间的两个区间边界元素所表示的后缀的LCP就是区间内所有元素所代表的后缀的Height的最小值。我们要求这个LCP,就相当于一个RMQ(Range Minimum Query)问题,当Height已知的时候,只要常数时间就可以求出RMQ,即所求的LCP。所以,关键是如何降低求Height数组的复杂度。不过人们发现Height数组有一个令人兴奋的性质。令 h(x) = Height(Rank(x)),即x号前缀的Height值,那么,

   当 x > 0 且 Rank(x) > 0 时, h(i) ≥ h(i - 1) - 1

  这个在这里就不证明了,反正证明过程相当巧妙 :-) 利用这个性质,有了下面的这个线性的求Height的算法:

void CalculateHeight(uchar* szText,
        int L, int* S, int* R, int* H, int* T)
{
    int i, j, k;

    for(k = 0, i = 0; i < L; i++)
    {
        if(R[i] == 0)
            H[i] = 0;
        else
        {
            for(j = S[R[i] - 1]; szText[i + k] == szText[j + k]; k++);

            H[R[i]] = k;

            if(k > 0)
                k--;
        }
    }
}

  初一看,这个不是 O( n2) 的吗?其实根据上面说的性质,可以证明,它是线性的,证明也略了 smoke
  下面是一个具体的ACM/ICPC竞赛题目的解法,原题你可以在这里找到: http://acm.pku.edu.cn/JudgeOnline/problem?id=2774

char C[200002];
int  D[4][200001];

int main()
{
    int i, l1, l2, b;
    int *S, *R, *H, *T;

    gets(C);
    l1 = (int)strlen(C);
    C[l1] = '$';
    gets((char*)C + l1 + 1);
    l2 = l1 + 1 + (int)strlen(C + l1 + 1);

    S = D[0]; R = D[1];
    H = D[2]; T = D[3];

    CreateSuffixArray((uchar*)C, l2, &S, &R, &H, &T);
    CalculateHeight((uchar*)C, l2, S, R, H, T);

    // 求两个串的最长公共子串,只要让两个串s1、s2
    // 连接在一起形成一个新串,求出新串的SA、Rank和Height
    // 很显然,最长公共子串肯定出现在后缀数组某相邻两项之中
    // 根据Height的定义,扫描一遍Height数组,找相邻两个分别开始于
    // s1和s2串某个位置的后缀,求出所有满足这个条件的最大Height即可

    for(b = 0, i = 1; i < l2; i++)
    {
        if(S[i] < l1 && S[i - 1] > l1 ||
            S[i] > l1 && S[i - 1] < l1)
        {
            if(H[i] > b)
                b = H[i];
        }
    }

    printf("%d/n", b);

    return 0;
}


  后缀数组的用处很大,除了上面的求两个串的最长公共字串之串之外,多模式匹配、最长回文串、全文检索等等都它的拿手好戏,可以说后缀数组是后缀树良好的替代品。 
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值