AB矩阵的逆为什么要把B矩阵的逆写在前面

这是线性代数矩阵变换的反序原则,和求矩阵的转置一样,需要把原来矩阵的顺序反过来。下面进行逆推证明:

(1)进行证明转换。如果要求AB矩阵的逆矩阵,那么该逆矩阵需要与AB矩阵相乘等于单位矩阵E。
在这里插入图片描述
(2)运算过程如图
在这里插入图片描述
(3)论述得证
在这里插入图片描述

矩阵运算与代数运算有着很大区别,在进行矩阵分配运算和平方运算时,矩阵的顺序不能搞反。求逆矩阵和转置矩阵都要满足矩阵反序原则。

扩展资料:

设A是数域上的一个n阶矩阵,若在相同数域上存在另一个n阶矩阵B,使得: AB=BA=E ,则我们称B是A的逆矩阵,而A则被称为可逆矩阵。注:E为单位矩阵。

(1)求逆矩阵的初等变换法:

将一n阶可逆矩阵A和n阶单位矩阵I写成一个nX2n的矩阵
在这里插入图片描述
对B施行初等行变换,即对A与I进行完全相同的若干初等行变换,目标是把A化为单位矩阵。当A化为单位矩阵I的同时,B的右一半矩阵同时化为了A的逆矩阵。
如求
在这里插入图片描述
的逆矩阵A-1。
在这里插入图片描述
故A可逆并且,由右一半可得逆矩阵A-1=
在这里插入图片描述
初等变换法计算原理:
若n阶方阵A可逆,即A行等价I,即存在初等矩阵P1,P2,…,Pk使得
在这里插入图片描述
在此式子两端同时右乘A-1得:
在这里插入图片描述
比较两式可知:对A和I施行完全相同的若干初等行变换,在这些初等行变化把A变成单位矩阵的同时,这些初等行变换也将单位矩阵化为A-1。 [2]

如果矩阵A和B互逆,则AB=BA=I。由条件AB=BA以及矩阵乘法的定义可知,矩阵A和B都是方阵。再由条件AB=I以及定理“两个矩阵的乘积的行列式等于这两个矩阵的行列式的乘积”可知,这两个矩阵的行列式都不为0。

也就是说,这两个矩阵的秩等于它们的级数(或称为阶,也就是说,A与B都是方阵,且rank(A) = rank(B) = n)。换句话说,这两个矩阵可以只经由初等行变换,或者只经由初等列变换,变为单位矩阵。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: 正确。 由于 A 和 B 均为可阵,因此存在它们的逆矩阵 A^-1 和 B^-1。 我们有: AB = A(BI) = A(BB^-1) = (AB)B^-1 其 BI 和 BB^-1 均为单位矩阵。 同理,我们也可以得到: BA = (AB)A^-1 由此可知: AB = BA 因此,若矩阵 A 和 B 均为可阵,则它们的乘积满足交换律。 ### 回答2: 若矩阵 A 和 B 均为可阵,则意味着存在逆矩阵 A^(-1) 和 B^(-1)。 我们可以对等式 AB = BA 进行推导: 左乘 A^(-1): A^(-1)(AB) = A^(-1)(BA) (A^(-1)A)B = A^(-1)(BA) IB = A^(-1)(BA) (其 I 为单位矩阵) B = A^(-1)(BA) 右乘 B^(-1): (BA)B^(-1) = (A^(-1)(BA))B^(-1) B(AB^(-1)) = A^(-1)((BA)B^(-1)) B(A^(-1)A) = A^(-1)((BA)B^(-1)) BI = A^(-1)((BA)B^(-1)) (其 I 为单位矩阵) B = A^(-1)((BA)B^(-1)) 根据以上推导,我们可以发现,在矩阵 A 和 B 均为可阵的情况下,A 与 B 的乘积 AB 和 BA 是相等的。这是因为 A 和 B 的逆矩阵 A^(-1) 和 B^(-1) 的存在,使得它们可以互相抵消,保持乘法运算的结果一致。 总结起来,若矩阵 A 和 B 均为可阵,则 AB = BA。 ### 回答3: 如果矩阵A和B均为可阵,即存在逆矩阵A^-1和B^-1,那么我们可以证明AB=BA。 首先,我们使用矩阵乘法规则来展开AB和BA。 假设A为m×n的矩阵,B为n×p的矩阵,那么AB为m×p的矩阵,BA为n×n的矩阵。 现在我们来展开ABAB = A(B的第1列) + A(B的第2列) + ... + A(B的第p列) = A[b1 b2 ... bp] = [Ab1 Ab2 ... Abp] 其,b1, b2, ..., bp代表B的列向量。 类似地,我们来展开BA: BA = B(A的第1行) + B(A的第2行) + ... + B(A的第m行) = B[a1; a2; ...; am] = [Ba1; Ba2; ...; Bam] 其,a1, a2, ..., am代表A的行向量。 由于矩阵乘法具有结合律,因此Abi等于A的第i列与向量bi的乘积。同样地,Ba1等于B的第一行与向量a1的乘积。 而我们已知A和B均为可阵,即存在逆矩阵A^-1和B^-1,使得AA^-1 = A^-1A = I,BB^-1 = B^-1B = I。 因此, [Ab1 Ab2 ... Abp] = A[b1 b2 ... bp] = AI = A, (1) [Ba1; Ba2; ...; Bam] = B[a1; a2; ...; am] = BI = B. (2) 从式(1)和式(2)可以看出,AB = BA成立。 故若矩阵A和B均为可阵,则AB = BA。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值