高等代数 矩阵的相抵和相似(第5章)2 相似,特征值与特征向量,对角化

一.矩阵的相似(5.4)
在这里插入图片描述
1.相似矩阵
(1)概念:
在这里插入图片描述
(2)性质:

性质1:如果 B 1 = P − 1 A 1 P , B 2 = P − 1 A 2 P B_1=P^{-1}A_1P,B_2=P^{-1}A_2P B1=P1A1P,B2=P1A2P,那么 B 1 + B 2 = P − 1 ( A 1 + A 2 ) P B 1 B 2 = P − 1 ( A 1 A 2 ) P B 1 m = P − 1 A 1 m P B_1+B_2=P^{-1}(A_1+A_2)P\\B_1B_2=P^{-1}(A_1A_2)P\\B_1^m=P^{-1}A_1^mP B1+B2=P1(A1+A2)PB1B2=P1(A1A2)PB1m=P1A1mP其中 m m m是正整数

性质2:若 A ∼ B A\sim B AB,则 ∣ B ∣ = ∣ A ∣ |B|=|A| B=A
在这里插入图片描述

性质3:相似的矩阵或者都可逆,或者都不可逆;当它们可逆时,它们的逆矩阵也相似

性质4:若 A ∼ B A\sim B AB,则 r a n k ( B ) = r a n k ( A ) rank(B)=rank(A) rank(B)=rank(A)
在这里插入图片描述

2.迹
(1)概念:
在这里插入图片描述
(2)性质:

性质5:矩阵的迹具有下列性质: t r ( A + B ) t r ( A ) + t r ( B ) ( 3 ) t r ( k A ) = k ⋅ t r ( A ) ( 4 ) t r ( A B ) = t r ( B A ) ( 5 ) tr(A+B)tr(A)+tr(B)\qquad(3)\\tr(kA)=k·tr(A)\qquad(4)\\tr(AB)=tr(BA)\qquad(5) tr(A+B)tr(A)+tr(B)(3)tr(kA)=ktr(A)(4)tr(AB)=tr(BA)(5)
在这里插入图片描述

性质6:若 A ∼ B A\sim B AB,则 t r ( A ) = t r ( B ) tr(A)=tr(B) tr(A)=tr(B)
在这里插入图片描述

3.相似不变量:
在这里插入图片描述
4.矩阵可对角化:
在这里插入图片描述

定理1:数域 K K K上的 n n n级矩阵 A A A可对角化的充要条件是: K n K^n Kn中有 n n n个线性无关的列向量 α 1 , α 2 . . . α n α_1,α_2...α_n α1,α2...αn,以及 K K K中有 n n n个数 λ 1 , λ 2 . . . λ n λ_1,λ_2...λ_n λ1,λ2...λn(这 n n n个数中可能有些是相等的),使得 A α i = λ i α i   ( i = 1 , 2... n ) ( 6 ) Aα_i=λ_iα_i\,(i=1,2...n)\qquad(6) Aαi=λiαi(i=1,2...n)(6)这时,令 P = ( α 1 , α 2 . . . α n ) P=(α_1,α_2...α_n) P=(α1,α2...αn),则 P − 1 A P = d i a g { λ 1 , λ 2 . . . λ n } P^{-1}AP=diag\{λ_1,λ_2...λ_n\} P1AP=diag{λ1,λ2...λn}
在这里插入图片描述

二.矩阵的特征值与特征向量(5.5)
在这里插入图片描述
1.概念:
在这里插入图片描述
2.存在性与求法
(1)特征矩阵与特征多项式:

λ I − A = [ λ − a 11 − a 12 . . . − a 1 n − a 21 λ − a 22 . . . − a 2 n . . . . . . . . . . . . − a n 1 − a n 2 . . . λ − a n n ] λI-A=\left[\begin{matrix}λ-a_{11}&-a_{12}&...&-a_{1n}\\-a_{21}&λ-a_{22}&...&-a_{2n}\\...&...&...&...\\-a_{n1}&-a_{n2}&...&λ-a_{nn}\end{matrix}\right] λIA=λa11a21...an1a12λa22...an2............a1na2n...λann称为矩阵 A A A特征矩阵
①由于 λ − a i i ∉ F   ( i = 1 , 2... n ) λ-a_{ii}\not∈F\,(i=1,2...n) λaiiF(i=1,2...n),从而 λ I − A λI-A λIA不是域 F F F上的矩阵;由于 λ − a i i ∈ F [ λ ]   ( i = 1 , 2... n ) λ-a_{ii}∈F[λ]\,(i=1,2...n) λaiiF[λ](i=1,2...n),从而 λ I − A λI-A λIA是域 F F F上一元多项式环 F [ λ ] F[λ] F[λ]上的矩阵
②对环 F [ λ ] F[λ] F[λ]上的矩阵,也可以定义加法/矩阵乘法/纯量乘法/行列式等概念,且这些概念和域 F F F上矩阵的相应概念相同(参见 高等代数.多项式环5.二.4.(1) 部分)
在这里插入图片描述
命题1:设 A A A是数域 K K K上的 n n n级矩阵,则 A A A的特征多项式 ∣ λ I − A ∣ |λI-A| λIA是1个 n n n次多项式, λ n λ^n λn的系数是1, λ n − 1 λ^{n-1} λn1的系数等于 − t r ( A ) -tr(A) tr(A),常数项为 ( − 1 ) n ∣ A ∣ , λ n − k (-1)^n|A|,λ^{n-k} (1)nA,λnk的系数为 A A A的所有 k k k阶主子式的和乘以 ( − 1 ) k   ( 1 ≤ k < n ) (-1)^k\,(1≤k<n) (1)k(1k<n)
在这里插入图片描述
在这里插入图片描述

(2)特征值与特征向量的求法:

定理2:设 A A A是数域 K K K上的 n n n级矩阵,则:
( 1 ) λ 0 (1)λ_0 (1)λ0 A A A的1个特征值当且仅当 λ 0 λ_0 λ0 A A A的特征多项式 ∣ λ I − A ∣ |λI-A| λIA K K K中的1个根
( 2 ) α (2)α (2)α A A A的属于特征值 λ 0 λ_0 λ0的1个特征向量当且仅当 α α α是齐次线性方程组 ( λ 0 I − A ) x = 0 (λ_0I-A)x=0 (λ0IA)x=0的1个非零解
在这里插入图片描述
在这里插入图片描述

(3)求矩阵的所有特征值与特征向量的一般步骤:
在这里插入图片描述
(4)特征子空间:
在这里插入图片描述
3.相似矩阵的性质(续):

性质1:相似的矩阵具有相等的特征多项式
在这里插入图片描述
性质2:相似的矩阵具有相同的特征值(包括重数)
在这里插入图片描述
由性质1,性质2可以看出,矩阵的特征多项式和特征值是相似不变量
在这里插入图片描述
另外,相似矩阵的特征向量不一定相同,实际上,通常不同

4.几何重数与代数重数
(1)概念:
在这里插入图片描述
(2)二者的关系:

命题2:设 λ 1 λ_1 λ1是数域 K K K n n n级矩阵 A A A的1个特征值,则 λ 1 λ_1 λ1的几何重数不超过其代数重数
在这里插入图片描述

三.矩阵可对角化的条件(5.6)
1.矩阵可对角化的条件:

定理3(即 一.4 部分的定理1):数域 K K K上的 n n n级矩阵 A A A可对角化的充要条件是: A A A n n n个线性无关的特征向量 α 1 , α 2 . . . α n α_1,α_2...α_n α1,α2...αn,此时令 P = ( α 1 , α 2 . . . α n ) P=(α_1,α_2...α_n) P=(α1,α2...αn) P − 1 A P = d i a g { λ 1 , λ 2 . . . λ n } P^{-1}AP=diag\{λ_1,λ_2...λ_n\} P1AP=diag{λ1,λ2...λn}其中 λ i   ( i = 1 , 2... n ) λ_i\,(i=1,2...n) λi(i=1,2...n) α i α_i αi所属的特征值,上述对角矩阵称为 A A A相似标准型,除了主对角线上元素的排列次序外, A A A的相似标准型是唯一的

定理4:数域 K K K上的 n n n级矩阵 A A A可对角化的充要条件是: A A A的属于不同特征值的特征子空间的维数之和等于 n n n
在这里插入图片描述
在这里插入图片描述
推论1:数域 K K K上的 n n n级矩阵 A A A如果有 n n n个不同的特征值,那么 A A A可对角化

定理5:数域 K K K上的 n n n级矩阵 A A A可对角化的充要条件是: A A A的特征多项式的全部复根都属于 K K K,并且 A A A的每个特征值的几何重数都等于其代数重数
在这里插入图片描述
在这里插入图片描述

2.属于不同特征值的特征向量线性无关:

定理6:设 λ 1 , λ 2 λ_1,λ_2 λ1,λ2是数域 K K K n n n级矩阵 A A A的不同的特征值, α 1 , α 2 . . . α s α_1,α_2...α_s α1,α2...αs β 1 , β 2 . . . β r β_1,β_2...β_r β1,β2...βr分别是 A A A的属于 λ 1 , λ 2 λ_1,λ_2 λ1,λ2的线性无关的特征向量,则 α 1 , α 2 . . . α s , β 1 , β 2 . . . β r α_1,α_2...α_s,β_1,β_2...β_r α1,α2...αs,β1,β2...βr线性无关
在这里插入图片描述
在这里插入图片描述

定理7:设 λ 1 , λ 2 . . . λ m λ_1,λ_2...λ_m λ1,λ2...λm是数域 K K K n n n级矩阵 A A A的不同的特征值, α j 1 , α j 2 . . . α j r j α_{j1},α_{j2}...α_{jr_j} αj1,αj2...αjrj A A A的属于 λ j   ( j = 1 , 2... m ) λ_j\,(j=1,2...m) λj(j=1,2...m)的线性无关的特征向量,则向量组 α 11 . . . α 1 r 1 . . . α m 1 . . . α m r m α_{11}...α_{1r_1}...α_{m1}...α_{mr_m} α11...α1r1...αm1...αmrm线性无关
在这里插入图片描述
推论1: n n n级矩阵 A A A的属于不同特征值的特征向量是线性无关的

四.实对称矩阵的对角化(5.7)
在这里插入图片描述
在这里插入图片描述
1.相关概念
(1)实对称矩阵:
在这里插入图片描述
(2)正交相似:
在这里插入图片描述
2.实对称矩阵的特征值与特征向量:

定理8:实对称矩阵的特征多项式的每个复根都是实数,从而它们都是特征值
在这里插入图片描述

定理9:实对称矩阵 A A A的属于不同特征值的特征向量是正交的
在这里插入图片描述

3.实对称矩阵的对角化
(1)实对称矩阵必可对角化:

定理10:实对称矩阵一定正交相似于对角矩阵
在这里插入图片描述
在这里插入图片描述
该定理表明:实对称矩阵一定可对角化

(2)实对称矩阵对角化的步骤:
在这里插入图片描述
(3)相关结论:

命题3:如果 n n n级实矩阵 A A A正交相似于1个对角矩阵 D D D,那么 A A A一定是对称矩阵
在这里插入图片描述

命题4:2个 n n n级实对称矩阵正交相似的充要条件是它们相似
在这里插入图片描述

  • 2
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值