WGS1984快速度确定平面坐标系UTM分带(快速套表、公式计算、软件范围判定)

        之前我们介绍了坐标系3°带6°带快速确定带号及中央经线(快速套表、公式计算、软件范围判定)就,讲的是CGCS2000 高斯克吕格的投影坐标系。

        那还有我们经常用的WGS1984的平面坐标系一般用什么投影呢?

对于全球全国的比如在线地图使用:WGS 1984 Web Mercator (auxiliary sphere),也会使用Albers投影。

图片

Web Mercator投影:

球面墨卡托,多用与发布的在线地图,将地球椭球体直接视为球体。

     但是我们使用最多的应该是UTM投影,我们经常下载的DEM、影像数据基本都是UTM的分带投影。现在我们对UTM进行介绍,以及如何进行UTM的快速分带选择。

图片

目录:1、快速套图表,2、公式计算,3、软件坐标范围选择判定。

一、 UTM投影介绍

       通用横轴墨卡托投影(UTM,Universal Transverse Mercator):横轴等角割圆柱投影,椭圆柱割地球南纬80度,北纬84度两条登高圈,投影后两条相割的经线没有变形,而中央经线上的长度比为0.9996。

        我国的卫星影像资料常采用WGS84下的UTM投影。亦是采用分带投影,分带方法与GK相似,但是由西经180°起每隔6°自西向东分带,将地球分为60个投影带,中国跨43-53带。

图片

下图可以直接确定各个经度所在的UTM坐在的带号。

图片

图片

    这样够清楚了吧,不管你的数据是在哪一个区域,我随时可以查阅。

比如福建省福州市:

福州市经纬度 福州市的经纬度坐标为北纬25°15′~26°39′,东经118°08′~120°31′。这个位置使福州成为了中国东南沿海的重要城市,与台湾隔海相望,地理位置优越

百度百科

福州118°08′~120°31′经度范围一套上面图,大概就是Zone50.也有少部分在Zone51

图片

二、 公式计算

  有时候,我们一下子急的很,找不到图表,我们也是可以直接通过公式计算。已知某一地的中心点经度118.3度,可以公式计算:

带号 N =Int((经度)/6)+31根据已知经度计算高斯克吕格投影的带号:(118.3)/3=19.71666666666667取整数+31=50

图片

三、 根据软件坐标文件判断

  还有时候,我们没有表也记不得公式,那怎么办? 我们在用ArcGIS的定义做坐标系的时候,会看到对应的选择是有具体信息的。

比如这个:投影坐标系WGS 1984 UTM Zone 50N

图片

        我们还是上一份数据某一地的中心点经度118.3度,

图片

        我们很容易判断这个UTM带的的范围为117-3到117+3,即114°~120°。118.3在114°~120°在这个范围内,也就选定了WGS 1984 UTM Zone 50N。

一起来参加我们的系统学习吧

图片

▼资源与学习▼


 推荐学习

ArcGIS全系列实战视频教程——9个单一课程组合
4大遥感软件!遥感影像解译!ArcGIS+ENVI+Erdas+eCognition
ArcGIS10.X入门实战视频教程(GIS思维)
ArcGIS之模型构建器(ModelBuilder)视频教程
ArcGIS之遥感影像分类及成果应用视频课程
ArcPy结合数据驱动模块的批量制图
ArcGIS之Data Reviewer空间数据质量检查
### WGS84UTM坐标的转换 WGS84坐标系是一个全球定位系统的标准地理坐标体系,而通用横轴墨卡托投影(UTM)是一种用于示地球面位置的地图投影方法。两者之间的转换涉及到一系列复杂的数学运算。 #### 转换过程概述 为了实现从WGS84UTM转换,通常会遵循以下公式: 1. **定义常量** 需要先设定一些椭球体参数以及其它必要的数值: - \( a \): 半径 (对于WGS84, 这个值大约为6378137米)[^1] - \( f \): 扁率 (约为1 / 298.257223563) 2. **计算中间变量** 使用给定的经纬(\( lat \),\( lon \))来求解几个重要的辅助量: ```python e = math.sqrt((2 * f) - pow(f, 2)) N = a / math.sqrt(1 - pow(e * math.sin(math.radians(lat)), 2)) ``` 3. **确定号和中心子午线** UTM分为多个区域,每个区域内都有特定的中央经线。可以根据输入的经找到对应的UTM区并获取其中心子午线的位置。 ```python zone_number = int((lon + 180) / 6) + 1 if zone_number == 0: zone_number = 1 central_meridian = (zone_number - 1) * 6 - 180 + 3 ``` 4. **应用具体的变换方程** 接下来利用上述准备好的数据完成最终的空间坐标映射: ```python n = a / math.sqrt(1 - pow(e, 2)) A = e / 2 + ((e**3)/8) + (((e**5)*5)/16) B = ((e**2)/4) + ((e**4)*5/16) C = (3*(e**3))/8 + (5*(e**5)*3)/16 D = (15*(e**4))/256 + (45*(e**6))/1024 E = (35*(e**5))/256 phi_prime = lat * math.pi / 180 lambda_prime = (lon - central_meridian) * math.pi / 180 v = n / math.sqrt(1 - (pow(e*math.sin(phi_prime), 2))) p = v * math.cos(phi_prime) T = pow(tan(phi_prime), 2) C_ = (pow(e, 2)*(pow(cos(phi_prime), 2))) / (1-e*e) A_ = (lambda_prime*p)/(factorial(2)) J2 = (p*(-1-2*T+C_))/(factorial(4))*pow(lambda_prime, 3) J4 = (p*(5+28*T+24*pow(T, 2)+ \ (-6-8*T)*C_+(4*C_*C_)-24*T*C_))\ /(factorial(6))*pow(lambda_prime, 5) J6 = (p*(-61-662*T+1320*pow(T, 2)\ -(720*power(T, 3))+(-479*C_)+(1792*T*C_)\ +(308*C_*C_)-(192*T*C_*C_)))\ /(factorial(8))*pow(lambda_prime, 7) easting = K0 * (A_ + J2 + J4 + J6) + 500000 northing = K0 * (v*tan(phi_prime)*(1+T/3-(T*T)/15-T*C_/9+ \ (4+T)*C_/(360))- \ (tan(phi_prime)/3)*(J2+J4+J6)+ \ tan(phi_prime)/45*(4*pow(J2, 2)+ \ 3*J4- \ pow(J2, 2)*J2-J6)) + NorthingOffset ``` 以上Python代码片段展示了如何基于给定的纬`lat`和经`lon`执行由WGS84UTM坐标的转变操作[^2]。请注意,在实际编程环境中还需要考虑更多细节比如异常处理等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

GIS思维

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值