诗篇128章

“凡敬畏耶和华、遵行他道的人,便为有福。你要吃劳碌得来的,你要享福,事情顺利。你妻子在你的内室,好像多结果子的葡萄树;你儿女围绕你的桌子,好像橄榄栽子。看哪,敬畏耶和华的人,必要这样蒙福!愿耶和华从锡安赐福给你;愿你一生一世看见耶路撒冷的好处。愿你看见你儿女的儿女;愿平安归于以色列。”(诗 128:1-6)

“敬畏耶和华、遵行祂道的人”在家庭中所要得的赏赐,“你要吃劳碌得来的,你要享福,事情顺利”,是其中之一。“你能吃你双手赚来的食物,你便实在幸运,也万事有福!”

在敬畏神的生活中,神对人类的审判(参创 3:17-19)缓和了,因为那样的劳碌是真正蒙神赐福的。诗人仿佛是要说:‘你们绝对肯定会蒙福’,因而不容有一丁点儿的怀疑:敬畏主有它相称的奖赏。”

“吃劳碌得来的”,不是自然而然、天经地义的事吗?怎么能说是神的赏赐呢?问题是如果没有神的赏赐,无论怎么“劳碌”,都可能没有一点收成。神曾借先知之口警告祂的选民:“你必撒种,却不得收割;踹橄榄,却不得油抹身;踹葡萄,却不得酒喝。”(弥 6:15)

祷告:

慈爱的天父,我们感谢祢,因为离开祢的帮助,我们将一事无成。求祢使我们牢记:“若不是耶和华建造房屋,建造的人就枉然劳力;若不是耶和华看守城池,看守的人就枉然警醒。你们清晨早起,夜晚安歇,吃劳碌得来的饭,本是枉然;惟有耶和华所亲爱的,必叫他安然睡觉。”(诗 127:1-2)奉主名求。阿们!

在电子设计自动化(EDA)领域,Verilog HDL 是一种重要的硬件描述语言,广泛应用于数字系统的设计,尤其是在嵌入式系统、FPGA 设计以及数字电路教学中。本文将探讨如何利用 Verilog HDL 实现一个 16×16 点阵字符显示功能。16×16 点阵显示器由 16 行和 16 列的像素组成,共需 256 个二进制位来控制每个像素的亮灭,常用于简单字符或图形显示。 要实现这一功能,首先需要掌握基本的逻辑门(如与门、或门、非门、与非门、或非门等)和组合逻辑电路,以及寄存器和计数器等时序逻辑电路。设计的核心是构建一个模块,该模块接收字符输入(如 ASCII 码),将其转换为 16×16 的二进制位流,进而驱动点阵的 LED 灯。具体而言,该模块包含以下部分:一是输入接口,通常为 8 位的 ASCII 码输入,用于指定要显示的字符;二是内部存储,用于存储字符对应的 16×16 点阵数据,可采用寄存器或分布式 RAM 实现;三是行列驱动逻辑,将点阵数据转换为驱动 LED 矩阵的信号,包含 16 个行输出线和 16 个列使能信号,按特定顺序选通点亮对应 LED;四是时序控制,通过计数器逐行扫描,按顺序控制每行点亮;五是复用逻辑(可选),若点阵支持多颜色或亮度等级,则需额外逻辑控制像素状态。 设计过程中,需用 Verilog 代码描述上述逻辑,并借助仿真工具验证功能,确保能正确将输入字符转换为点阵显示。之后将设计综合到目标 FPGA 架构,通过配置 FPGA 实现硬件功能。实际项目中,“led_lattice”文件可能包含 Verilog 源代码、测试平台文件、配置文件及仿真结果。其中,测试平台用于模拟输入、检查输出,验证设计正确性。掌握 Verilog HDL 实现 16×16 点阵字符显示,涉及硬件描述语言基础、数字逻辑设计、字符编码和 FPGA 编程等多方面知识,是学习
循环神经网络(Recurrent Neural Network, RNN)是一种特殊的深度学习模型,用于处理序列数据,如文本、音频和时间序列预测。下面是一个简单的实验概述: **实验目的**: 1. 学习如何使用RNN进行文本生成或情感分析等任务。 2. 理解并实践LSTM(长短期记忆)或GRU(门控循环单元)这类改进型RNN结构。 **实验原理任务描述**: 例如,我们将构建一个RNN进行英文诗歌的文本生成。输入是已有的诗歌数据,目标是让模型学会语言的规律,然后随机生成新的诗句。 **数据集**: 可以使用如“Shakespeare Sonnets”数据集,它包含莎士比亚的一些诗篇。也可以选择像IMDB电影评论数据集,用于情感分类。 **需要加载的库**: 1. TensorFlow或PyTorch(常用深度学习框架) 2. NumPy 3. Pandas (用于数据处理) 4. NLTK 或 Spacy (文本预处理) **简单代码示例(使用TensorFlow)**: ```python import tensorflow as tf from tensorflow.keras.preprocessing.text import Tokenizer from tensorflow.keras.preprocessing.sequence import pad_sequences # 数据预处理部分 data = ... # 加载或读取数据集 tokenizer = Tokenizer() tokenizer.fit_on_texts(data) sequences = tokenizer.texts_to_sequences(data) max_length = max([len(seq) for seq in sequences]) padded_sequences = pad_sequences(sequences, maxlen=max_length) # 构建模型(LSTM为例) model = tf.keras.Sequential([ tf.keras.layers.Embedding(input_dim=len(tokenizer.word_index)+1, output_dim=64), tf.keras.layers.LSTM(128), tf.keras.layers.Dense(1, activation='sigmoid') if task == 'binary_classification' else tf.keras.layers.Dense(len(tokenizer.word_index)+1, activation='softmax') ]) # 编译并训练模型 model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) model.fit(padded_sequences, ..., epochs=50, batch_size=32) # 生成新文本 new_text = model.predict_classes(padded_sequences[-1].reshape(1,-1)) decoded_new_text = [tokenizer.index_word[i] for i in new_text[0]] ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值