运筹系列4:整数规划割平面法python代码

1. 分支割平面(branch and cut)

割平面简单来说,就是添加约束条件
Cuts are constraints added to a model to restrict (cut away) noninteger solutions that would otherwise be solutions of the continuous relaxation. The addition of cuts usually reduces the number of branches needed to solve a MIP.

在使用分支定界法时,我们一般是首先尝试添加各种割平面后看能不能求出整数解,如果不行再分支。这种方法叫做Branch and Cut
首先介绍一些基本的cut方法:

  1. rounding:
    比如整数变量 x ≤ 1.5 x\le 1.5 x1.5可以转化为 x ≤ 1 x\le 1 x1
    还有GCD reduction:比如 3 x + 6 y + 9 z ≤ 11 3x+6y+9z \le 11 3x+6y+9z11,同时除以3后有 x + 2 y + 3 z ≤ 3 x+2y+3z\le 3 x+2y+3z3
    Gomory rouding cut:比如 3 x + 3 y + 5 z ≤ 8 3x+3y+5z\le 8 3x+3y+5z8,同时除以3有 x + y + 5 / 3 z ≤ 8 / 3 x+y+5/3z\le 8/3 x+y+5/3z8/3,两边rounding得到 x + y + z ≤ 2 x+y+z\le2 x+y+z2
  2. lifting:
    比如 4 x + y ≥ 2 , x 4x+y\ge 2, x 4x+y2,x binary,x从0提升到1,左边slack为2,x前面的系数可以减去2变为 2 x + y ≥ 2 2x+y\ge 2 2x+y2
  3. disjunction:
    比如 x + y ≥ 3.5 , x , y ≥ 0 , y x+y\ge 3.5,x,y\ge0,y x+y3.5,x,y0,y integer,可以把y拆分为 y ≥ 4 y \ge 4 y4 y ≤ 3 y\le 3 y3两部分。

2. cut介绍

剪枝方法分为对约束形式有要求的特殊剪枝以及通用的剪枝:

  • Generic Cuts (valid for any MILP)
    Gomory Mixed Integer
    Mixed Integer Rounding
    Disjunctive cut
  • Special Structures (valid for certain relaxations of MILPs)
    Knapsack / Gub Cover, Pack (many applications)
    Flow Cover / Path (fixed charge network flow, lot-sizing, …)
    Cliques / Odd-Hole (set partitioning, covering, packing)
    Implied Bound (logical implications between binary variables)

2.1 Disjunctive cut

在分支定界算法中,添加的x≤floor[xs]和x≥ceil[xs]便是两个用来割平面的约束条件,floor[x]和ceil[x]之间的整个可行域在对x进行分支的过程中被切割掉了,称为disjunctive cuts

2.2 Gomory cut

Gomory的思想是将等式两边系数的小数部分拿出来做成新的约束,主要适用于纯整数规划。
假设 a x = b , x ∈ Z ax= b,x \in Z ax=b,xZ,则一定有 ⌊ a ⌋ x ≤ ⌊ b ⌋ \lfloor a\rfloor x\le \lfloor b\rfloor axb,然后两者相减,得到: f a x ≥ f b f_ax\ge f_b faxfb;反过来有 y + ⌈ a ⌉ x ≥ ⌈ b ⌉ y+\lceil a\rceil x\ge \lceil b\rceil y+axb,然后两者相减,得到: ( 1 − f a ) x ≥ 1 − f b (1-f_a)x\ge 1-f_b (1fa)x1fb。下面是个例子:
在这里插入图片描述

Gomory可以与其他方法组合使用。假设整数规划的线性松弛问题求解结果中有一个基变量 y = b y=b y=b不是整数,对应约束: y + Σ a j x j + Σ a k x k = b y+\Sigma a_jx_j+\Sigma a_kx_k=b y+Σajxj+Σakxk=b
令: y + Σ ⌊ a j ⌋ x j + Σ ⌈ a k ⌉ x k = t y+\Sigma \lfloor a_j\rfloor x_j+\Sigma \lceil a_k\rceil x_k=t y+Σajxj+Σakxk=t(两边取整)
相减得到: Σ f a j x j − Σ ( 1 − f a k ) x k = b − t \Sigma f_{a_j}x_j-\Sigma (1-f_{a_k})x_k =b-t ΣfajxjΣ(1fak)xk=bt
disjunction,有
b − t ≥ 0 = > Σ f a j x j ≥ f b b-t\ge0=>\Sigma f_{a_j}x_j \ge f_b bt0=>Σfajxjfb
b − t < 0 = > Σ ( 1 − f a k ) x k ≥ 1 − f b b-t<0=>\Sigma (1-f_{a_k})x_k\ge 1-f_b bt<0=>Σ(1fak)xk1fb
合并得到 Σ f a j x j / f b + Σ ( 1 − f a k ) x k / ( 1 − f b ) ≥ max ⁡ { Σ f a j x j / f b , Σ ( 1 − f a k ) x k / ( 1 − f b ) } ≥ 1 \Sigma f_{a_j}x_j / f_b+\Sigma (1-f_{a_k})x_k/(1-f_b)\ge \max\{\Sigma f_{a_j}x_j / f_b,\Sigma (1-f_{a_k})x_k/(1-f_b)\}\ge1 Σfajxj/fb+Σ(1fak)xk/(1fb)max{Σfajxj/fb,Σ(1fak)xk/(1fb)}1
我们一般选取 f a j ≤ f b , f a k > f b f_{a_j}\le f_b,f_{a_k}>f_b fajfb,fak>fb,这样系数都小于1,约束比较紧。

在求解器中,一般只应用于根节点,挑选非整数最严重的一些变量(比如100个)添加gomory割平面到松弛问题上,然后重复两遍。

2.3 MIR cut

MIR cuts are generated by applying integer rounding on the coefficients of integer variables and the righthand side of a constraint.
核心思想是对整数变量与非整数变量>=0的交点进行distructive cut,然后连接cut的两个交点形成一个新的约束条件。
在这里插入图片描述

Mix integer rounding针对的是如下问题:
y ≤ b + x , y ∈ Z y\le b+x,y\in Z yb+x,yZ,我们可以添加cut:
y ≤ ⌊ b ⌋ + x / ( 1 − f b ) y\le \lfloor b\rfloor+x/(1-f_b) yb+x/(1fb)
证明:
f x + f b < 1 f_x+f_b<1 fx+fb<1,则原约束满足 y ≤ ⌊ b ⌋ + ⌊ x ⌋ ≤ ⌊ b ⌋ + x / ( 1 − f b ) y\le \lfloor b \rfloor+\lfloor x \rfloor\le \lfloor b\rfloor+x/(1-f_b) yb+xb+x/(1fb)
f x + f b ≥ 1 f_x+f_b\ge1 fx+fb1,则原约束满足 y ≤ ⌊ b ⌋ + 1 + ⌊ x ⌋ ≤ ⌊ b ⌋ + ( f x + ⌊ x ⌋ ) / f x ≤ ⌊ b ⌋ + x / ( 1 − f b ) y\le \lfloor b \rfloor+1+\lfloor x \rfloor\le \lfloor b\rfloor+(f_x+\lfloor x \rfloor)/f_x\le \lfloor b\rfloor+x/(1-f_b) yb+1+xb+(fx+x)/fxb+x/(1fb)

反过来,我们也有:
y + x ≥ b , y ∈ Z y+x\ge b,y\in Z y+xb,yZ,我们可以添加cut:
y + x / f b ≥ ⌈ b ⌉ y+x/f_b\ge \lceil b\rceil y+x/fbb
如下图:
在这里插入图片描述

MIR的一个扩展是:
对于问题 Σ a j y j + x − z ≤ ⌊ b ⌋ \Sigma a_jy_j+x-z\le \lfloor b\rfloor Σajyj+xzb,我们可以添加cut:
Σ ( ⌊ a j ⌋ + ( f a j − f b ) + / ( 1 − f b ) ) y j ≤ ⌊ b ⌋ + z / ( 1 − f b ) \Sigma(\lfloor a_j \rfloor+(f_{a_j}-f_b)^+/(1-f_b))y_j\le \lfloor b\rfloor+z/(1-f_b) Σ(aj+(fajfb)+/(1fb))yjb+z/(1fb)
证明:
f a j ≥ f b f_{a_j}\ge f_b fajfb,则 ( f a j − f b ) / ( 1 − f b ) ≤ ( f a j − f b f a j ) / ( 1 − f b ) = f a j (f_{a_j}-f_b)/(1-f_b)\le (f_{a_j}-f_bf_{a_j})/(1-f_b)=f_{a_j} (fajfb)/(1fb)(fajfbfaj)/(1fb)=faj
f a j < f b f_{a_j}< f_b faj<fb,使用rounding,必有 ⌊ a j ⌋ y j ≤ ⌊ b ⌋ \lfloor a_j \rfloor y_j\le \lfloor b\rfloor ajyjb

2.4 Cover cut

cover cut有多种,这里介绍knapsack cover cut,针对如下约束:
Σ a x ≤ b , x \Sigma ax\le b,x Σaxb,x binary
若集合 C C C满足 Σ C a > b \Sigma_C a > b ΣCa>b,则把 C C C称为一个cover,cover cut为:
σ C x j ≤ ∣ C ∣ − 1 \sigma_Cx_j\le |C|-1 σCxjC1
在这里插入图片描述

cover cut也可以和其他方法进行结合,如下:
在这里插入图片描述

2.5 clique cut

若一系列binary变量两两互斥,则可以生成clique cut,即:
x + y ≤ 1 , z + y ≤ 1 , x + z ≤ 1 x+y\le 1,z+y\le 1,x+z\le 1 x+y1,z+y1,x+z1
x + y + z ≤ 1 x+y+z\le 1 x+y+z1

3.从User cut到Lasy cut

无论是普通B&B中的对变量进行切分,还是B&C用约束条件的小数部分形成切分,切分条件对于原问题都是符合的,称为User cut。如果原问题还有一些隐含的额外约束可以作为cut,这些cut称为Lasy cut。
另外有种情况会使用到lasy cut,那就是有很多约束在最开始的时候是冗余的,这些约束会被放进一个pool中,时不时拿出来检查一下,如果被违反了,就加入约束中;如果有一段时间不违反了,再把它放回pool中。这样可以减少每次迭代的计算量

4.python代码

基本框架还是用分支定界法,每次求解完之后添加割平面的约束条件:

def add_new_restriction(matrix):
    new_column = np.zeros(matrix.shape[0]+1)
    new_line = np.zeros(matrix.shape[1])
    new_column[-1] = -1 
    #这里简单使用第一行约束条件为基础生成新约束条件。
    new_line = matrix[1, :] 
    for index in range(0, len(new_line)):
        number = np.array(new_line[index], dtype=float)
        if number.tolist().is_integer() == False:
            new_line[index] = math.floor(new_line[index])
    matrix = np.insert(matrix, matrix.shape[0], new_line, axis=0)
    matrix = np.insert(matrix, -1, new_column, axis=1)
    return matrix
  • 10
    点赞
  • 60
    收藏
    觉得还不错? 一键收藏
  • 7
    评论
### 回答1: Solomon数据集是供研究和评估智能算性能的基准测试集之一,由美国自动化专家Edward A. Solomon博士在1987年创建。该数据集包含了多个系列问题,每个系列都涉及到一个特定的优化问题。 Solomon数据集的各系列问题主要涉及车辆路径规划、物流配送和排产调度等领域。每个系列由不同规模的问题组成,即不同数量和类型的任务、车辆和时间窗口约束。这些问题往往是现实生活中具有挑战性的优化问题,研究者可以利用Solomon数据集来开发和测试各种优化算。 Solomon数据集的系列之一是CVRP系列问题,即车辆路径规划问题。这个系列包含了一些具有不同规模的订单和车辆的问题,其中每个订单需要在时间窗口内被配送到指定的位置。研究者可以使用这个系列问题来开发,以寻找最佳的配送路径,以最小化总体配送成本。 另一个系列是VRPTW系列问题,即车辆路径规划问题与时间窗口。这个系列问题更加复杂,除了在CVRP中的要求外,还要求车辆在指定时间窗口内到达每个订单的目的地。这样的问题在物流配送和服务调度等领域具有重要应用,研究者可以利用Solomon数据集中的VRPTW系列问题来开发,以提高配送效率和服务质量。 除了上述两个系列问题,Solomon数据集还包括其他系列,如MDVRP(多车辆路径规划)、PDP(拆分配送问题)等。这些问题涵盖了各种具有挑战性的优化问题,研究者可以根据自己的研究需求选择合适的系列问题进行实验和比较。 总之,Solomon数据集的各系列问题提供了标准化的测试基准,帮助研究者评估和比较不同的智能算在复杂优化问题上的性能。研究者可以利用这些问题来开发和改进算,以应对现实生活中的物流、调度等挑战。 ### 回答2: Solomon数据集是一套用于测试路径规划问题的标准数据集,它被广泛应用于运筹学和供应链研究中。该数据集由Mathematical Programming Society设计,并以数据集创建者Edward A. Silver的名字命名。Solomon数据集包含了一系列不同规模和复杂度的路径规划问题,可以用于评估不同算在不同场景下的性能。 Solomon数据集一共有六个系列,分别是C1、C2、C3、R1、R2和RC。C系列代表的是客户数目固定的问题,而R系列包含的是客户数目随机的问题。每个系列都有多个实例,每个实例都包括了车辆数、车辆容量、客户需求、距离矩阵等信息。 C1系列是Solomon数据集中最简单的系列,它的实例数量较少,适用于初学者和简单的路径规划问题。C2和C3系列比C1系列更复杂,实例数量也更多,对算的鲁棒性和效率有更高的要求。 R1和R2系列是Solomon数据集中的随机问题,客户的数量在每个实例中是随机生成的。这种随机性使得问题的规模和复杂度变化多样,能够更全面地评估算的性能。 RC系列是由C系列和R系列中的实例组成的混合系列。这些实例既包含了固定客户数目的问题,也包含了随机客户数目的问题,对算在不同场景下的适用性进行了全面的考察。 总的来说,Solomon数据集的各个系列包含了不同规模、不同复杂度的路径规划问题,是评估和比较不同算性能的重要标准。研究者和从业者可以根据自己的需求选择合适的系列和实例进行研究和实验。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值