有效不等式 (Valid Inequalities)、 割平面(Cutting Plane)算法
(1)最可能的结果和理想约束都是由提供
(2)目标:通过给定的已知条件,找到有效方法来近似获得
(3)通过生成线性不等式(所有整数解均满足)来加强约束,这种不等式称为有效不等式
定义6:对于所有
均满足
。那么对于
,不等式
是一个有效不等式
其中,有效,当且仅当X落在半平面
中
(1)0-1背包问题
(a) 如果,那么
(不成立),因此
(b) 如果,那么
(x3,x5取0,x4取1),因此
(x1不大于x2,)(1,1;0,1;0,0)
(2)混合整数集
(x 为 连续值, y 为整数)
其中不等式是有效的,并提供了X的凸包
(3)近似(Rounding )
(a) 对三个约束 使用进行线性组合
(b) 对一些系数进行降低(reducing),或者使用替代(substituting)
(将1/2 用“0” 代替,因为都为正整数,所以变为小于号)
(c) 左端项为整数,因此右端项必然
每个变量均为正整数,可以将3/2 改为“1”
(d) 最终的不等式变为:, 切掉了LP问题的最优解
生成有效不等式的方法
(1)如果是可行整数解集,并且
是问题约束的线性松弛的可行域,那么除非
(P为所有整数解X的凸包),那么存在有效不等式对于
有效,但不满足P。(包含凸包的更小可行域)
(2)生成有效不等式的方法:
(a)近似(rounding)
(b)模运算(Modular arithmetic )
(c)混合整数近似(Mixed integer rounding)
(d)吸取(Disjunctions)
(e)添加(Superadditivity)
Rounding:
(1)此方法基于下面两个现象:
(a) 如果,,那么
(x取不大于a的最大整数,向下取整)
(b) 如果 包含X的有效不等式,且
,那么
对于
依然有效 (等式两边同时乘以一个大于“0”的数,不等式不变号)
(2)令 为矩阵
的列,且
定义7(有理多面体,Rational Polyhedron):如果存在一个带有合理系数的
大小的矩阵
使得
,那么这个多面体是有理的(rational )
Chv´atal-Gomory Procedure
(1)选择,并计算矩阵
行的一个线性组合:
(2) 将系数向下取整(Round down):
(3) 将右端项向下取整(Round down):
通过改变,我们得到第一个Chv´atal 封闭多面体
:
的线性描述
定理1:
是一个多面体
给定是一个有理多面体,可以再次对
使用近似(rounding)操作,从而得到
从而可以得到一系列的多面体:
定理2:对于
每个有效不等式可以使用Chv´atal-Gomory操作在有限次后得到
定理3:令
为一个有理多面体,那么我们可以得到
,对于
定义8(Chv´atal 的秩):
为一个有理多面体,Chv´atal 的秩为最小整数k,使得在第k次得到凸包
图
的匹配问题
(1)对于图,匹配(matching)
是不相连的边(disjoint edges)的集合,
比如,每个子图中的节点,不出现在第二条边上