
数据处理
文章平均质量分 86
数据预处理,数据降维,特征工程
优惠券已抵扣
余额抵扣
还需支付
¥49.90
¥99.00
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
机器学习之心
博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类、降维、优化和评价等程序设计和案例分析,文章底部有博主联系方式。
展开
-
数据清洗代码:缺失值,异常值,离群值Matlab处理
数据清洗代码:缺失值,异常值,离群值Matlab处理原创 2024-12-07 22:17:39 · 300 阅读 · 0 评论 -
数据降维 | Matlab实现POD本征正交分解数据降维模型
数据降维 | Matlab实现POD本征正交分解数据降维模型原创 2024-03-23 13:54:54 · 1355 阅读 · 0 评论 -
异常检测 | MATLAB实现BiLSTM(双向长短期记忆神经网络)数据异常检测
异常检测 | MATLAB实现BiLSTM(双向长短期记忆神经网络)数据异常检测原创 2023-12-08 12:17:36 · 1492 阅读 · 4 评论 -
特征选择 | MATLAB实现特征变量相关性系数图和显著性检验
特征选择 | MATLAB实现特征变量相关性系数图和显著性检验原创 2022-06-13 10:37:23 · 5347 阅读 · 0 评论 -
数据处理 | Python实现基于DFCP张量分解结合贝叶斯优化的缺失数据填补
数据处理 | Python实现基于DFCP张量分解结合贝叶斯优化的缺失数据填补原创 2023-08-26 13:40:37 · 584 阅读 · 1 评论 -
聚类分析 | MATLAB实现k-Means(k均值聚类)分析
目录聚类分析 | MATLAB实现k-Means(k均值聚类)分析k-均值聚类简介数据下载程序设计学习小结参考资料致谢聚类分析 | MATLAB实现k-Means(k均值聚类)分析k-均值聚类简介k均值聚类是一种分区方法。该函数kmeans将数据划分为k 个互斥的簇,并返回它为每个观察分配的簇的索引。 kmeans将数据中的每个观察值视为在空间中具有位置的对象。该函数找到一个分区,其中每个集群中的对象尽可能彼此靠近,并尽可能远离其他集群中的对象。您可以根据数据的属性选择要使用 的距离度量kmeans原创 2021-08-24 22:29:13 · 4196 阅读 · 1 评论 -
数据处理 | Matlab实现Lichtenberg算法的机器学习数据选择
数据处理 | Matlab实现Lichtenberg算法的机器学习数据选择原创 2023-07-15 00:30:07 · 972 阅读 · 0 评论 -
时序预测 | MATLAB实现时间序列回归之交叉验证及损失函数
时序预测 | MATLAB实现时间序列回归之交叉验证及损失函数目录时序预测 | MATLAB实现时间序列回归之交叉验证及损失函数基本介绍数据下载程序设计环境准备交叉验证损失函数模型比较参考资料致谢基本介绍本文介绍MATLAB实现时间序列回归之交叉验证及损失函数。数据下载下载地址:https://download.csdn.net/download/kjm13182345320/32963795程序设计环境准备load Data_TSReg4展示了具有水平和差异的全套预测变量的原创 2021-10-14 12:12:19 · 2299 阅读 · 0 评论 -
模糊聚类 | MATLAB实现基于FC模糊聚类数据分析
模糊聚类 | MATLAB实现基于FC模糊聚类数据分析原创 2023-05-07 16:10:20 · 605 阅读 · 0 评论 -
数据降维 | MATLAB实现基于LFDA基于局部费歇尔判别的分类数据降维可视化
数据降维 | MATLAB实现基于LFDA基于局部费歇尔判别的分类数据降维可视化原创 2023-05-01 10:04:00 · 1235 阅读 · 0 评论 -
特征选择 | MATLAB实现特征变量相关性分析(Pearson相关系数,Kendall相关系数和Spearman相关系数)
模型评估 | MATLAB实现特征变量相关性分析(Pearson相关系数,Kendall相关系数和Spearman相关系数)原创 2022-06-13 10:03:40 · 4858 阅读 · 0 评论 -
相似度量 | MATLAB实现相似度计算(对数似然相似度、Jaccard相似度、余弦相似度)
相似度量 | MATLAB实现相似度计算(对数似然相似度、Jaccard相似度、余弦相似度)原创 2022-07-06 18:45:08 · 3932 阅读 · 0 评论 -
时序预测 | MATLAB实现时间序列回归之评估模型残差及相关分析
时序预测 | MATLAB实现时间序列回归之评估模型残差及相关分析原创 2021-10-26 15:36:03 · 3849 阅读 · 0 评论 -
数据绘图 | MATLAB数据绘图之折线图
数据绘图 | MATLAB数据绘图之折线图title('适应度曲线','fontsize',12)xlabel('进化代数',原创 2022-04-26 20:08:49 · 4158 阅读 · 0 评论 -
异常检测 | MATLAB实现基于支持向量机和孤立森林的数据异常检测(结合t-SNE降维和DBSCAN聚类)
异常检测 | MATLAB实现基于支持向量机和孤立森林的数据异常检测(结合t-SNE降维和DBSCAN聚类)原创 2022-11-17 18:09:46 · 2201 阅读 · 0 评论 -
异常检测 | MATLAB实现BiLSTM(双向长短期记忆神经网络)数据异常检测
异常检测 | MATLAB实现BiLSTM(双向长短期记忆神经网络)数据异常检测原创 2022-11-16 18:24:24 · 1352 阅读 · 0 评论 -
异常检测 | MATLAB实现LOF局部离群因子时间序列异常数据检测算法
异常检测 | MATLAB实现LOF局部离群因子时间序列异常数据检测算法原创 2022-07-06 17:46:24 · 3485 阅读 · 0 评论 -
数据处理 | MATLAB实现RF(随机森林)缺失数据填补
数据处理 | MATLAB实现RF(随机森林)缺失数据填补目录数据处理 | MATLAB实现RF(随机森林)缺失数据填补基本介绍插补描述程序设计参考资料致谢基本介绍用于缺失值插补的单变量方法是估计值的简单方法,可能无法始终提供准确的信息。现实中收集的数据,几乎不可能是完美无缺的,往往会有一些缺失值,面对缺失值,很多人先择的方法是直接将包含缺失值的样本删除,这是一种有效的方法,但是有时候填补缺失值比之际丢弃样本有更好的效果。RF(随机森林)这样的算法可以帮助对缺失数据的值进行插补。随机森林是一种用于原创 2022-05-19 16:05:40 · 3745 阅读 · 0 评论 -
数据处理 | MATLAB实现KNN(K近邻)缺失数据填补
回归预测 | MATLAB实现KNN(K近邻)缺失数据填补目录回归预测 | MATLAB实现KNN(K近邻)缺失数据填补基本介绍插补描述程序设计参考资料基本介绍用于缺失值插补的单变量方法是估计值的简单方法,可能无法始终提供准确的信息。k-最近邻(kNN)这样的算法可以帮助对缺失数据的值进行插补。社会学家和社区研究人员认为,人类之所以生活在一个社区中,是因为邻居们产生了一种安全感、对社区的依恋感以及通过参与各种活动而产生社区认同感的人际关系。对数据起作用的一种类似的插补方法是k-最近邻(kNN),它通原创 2022-04-27 10:07:02 · 8349 阅读 · 1 评论 -
时序预测 | MATLAB实现时间序列回归之似然检验
时序预测 | MATLAB实现时间序列回归之似然检验目录时序预测 | MATLAB实现时间序列回归之似然检验基本介绍程序设计学习小结参考资料基本介绍使用 CNLM 假设制定的 t 和 F 检验版本可以在创新分布偏离规范的各种情况下提供可靠的推论。相比之下,基于可能性的测试需要一个正式的创新模型才能运行。数据似然度通常是在具有固定方差的独立且正态分布的创新假设下计算的。可以调整 DGP 的这个基础模型以适应不同的创新模式,包括极端事件的更高概率,但仍然存在强分布假设。与 F 统计量一样,数据似原创 2022-01-15 14:09:44 · 850 阅读 · 0 评论 -
时序预测 | MATLAB实现时间序列回归之偏差估计
时序预测 | MATLAB实现时间序列回归之偏差估计目录时序预测 | MATLAB实现时间序列回归之偏差估计基本介绍程序设计学习小结参考资料基本介绍最初,滞后结构可能包括对多个近似时间的经济因素的观察。但是,由于经济惯性,时间 观测值很可能与时间观测值相关。滞后结构可能会通过包含一系列对 DGP 仅具有边际贡献的滞后预测变量来过度指定响应的动态。该规范会夸大过去历史的影响,而未能对模型施加相关限制。扩展滞后结构还需要扩展样本前数据,从而减少样本量并减少估计程序中的自由度数。 因此,过度指定的模原创 2021-12-03 12:24:27 · 1083 阅读 · 0 评论 -
时序预测 | MATLAB实现时间序列回归之评估模型残差及统计分布
时序预测 | MATLAB实现时间序列回归之评估模型残差及统计分布目录时序预测 | MATLAB实现时间序列回归之评估模型残差及统计分布基本介绍数据下载程序设计异方差性统计分布学习总结参考资料致谢基本介绍残差分析的基本目的是检查 CLM 假设并寻找模型指定错误的证据。残差中的模式表明有机会重新指定以获得具有更准确的 OLS 系数估计、增强的解释力和更好的预测性能的模型。不同的模型可以表现出相似的残差特征。如果是这样,则可能需要保留替代模型并在预测阶段进一步评估。从预测的角度来看,如果一个模型成功原创 2021-10-26 15:37:19 · 2501 阅读 · 0 评论 -
时序预测 | MATLAB实现时间序列回归之置否条件预测
时序预测 | MATLAB实现时间序列回归之置否条件预测目录时序预测 | MATLAB实现时间序列回归之置否条件预测基本介绍数据下载程序设计有条件预测无条件预测学习小结参考资料致谢基本介绍从多个线性回归模型生成有条件和无条件预测的基本设置进行预测。经济学中的许多回归模型都是为了解释目的而建立的,以了解相关经济因素之间的相互关系。这些模型的结构通常由理论提出。规范分析比较模型的各种扩展和限制,以评估各个预测变量的贡献。显着性检验在这些分析中尤为重要。建模目标是实现对重要依赖项的明确指定、准确校原创 2021-11-05 20:37:13 · 717 阅读 · 0 评论 -
时序预测 | MATLAB实现时间序列回归之共线性分析和岭回归
时序预测 | MATLAB实现时间序列回归之共线性和方差估计目录时序预测 | MATLAB实现时间序列回归之共线性和方差估计基本介绍程序设计相关分析方差估计共线性诊断岭回归学习小结参考资料致谢基本介绍此示例说明如何检测预测变量之间的相关性并解决估计量方差较大的问题,它是有关时间序列回归模型问题。对于真实的数据生成过程 (DGP),经济模型总是没有明确规定。模型预测变量永远不会完全代表产生经济响应的所有因果因素。然而,被忽略的变量在创新过程中继续发挥其影响,迫使模型系数解释它们并没有真正解释原创 2021-09-06 21:07:54 · 1686 阅读 · 0 评论 -
聚类分析 | MATLAB实现HC(层次聚类)分析
聚类分析 | MATLAB实现HC(层次聚类)分析目录聚类分析 | MATLAB实现HC(层次聚类)分析层次聚类简介数据下载程序设计学习小结参考资料致谢层次聚类简介层次聚类是通过创建聚类树,同时在多个距离尺度内调查数据分组的一种方法。与 K-均值法不同,树并不是一组簇的简单组合,而是一个多级层次结构,较低级别的簇在相邻的更高级别合并成新的簇。使用这种方法,您可以选择最适合您的应用场景的聚类尺度或级别。K 均值聚类是一种分区方法,它将数据中的观测值视为具有位置和相互间距离的对象。它将对象划分为 K原创 2021-08-25 22:42:04 · 2749 阅读 · 0 评论