N皇后问题

暑假闲来无聊,于是想到将本科四年的一些作业和项目稍加整理,加以总结写到博客中,以便日后查阅,也可以和大家互相学习进步。

第一篇就是大一刚学c++时候的作业-八皇后问题,然后深入考虑n皇后问题。

当时的代码如下:

#include <iostream>
#include <cmath>
#include <time.h>
#include <algorithm>
#include <vector>
using namespace std;

int result[1000];                                    //利用数组储存问题的解
vector<int> resultVec;

bool QueenRecursive(const int n,const int t)              //利用递归求解
{
	if(t==n)
	{
		cout<<"解决方案:"<<endl;
		for(int l=0;l<n;l++)
		{
			cout<<result[l]<<" ";
		}
		return true;                 
	}
	else
	{
		for(int j=0;j<n;j++)
		{
			result[t]=j;
			bool flag = true;	 
			for(int k=0;k<t;k++)
			{ 
				if((abs(result[t]-result[k])==t-k)||(result[t]==result[k]))
				{
					flag = false;
				}
			}
			if(flag == true)                       //如果符合就继续递归
			{
				if(QueenRecursive(n,t+1) == true)
				{
					return true;
				}
			}
	    }
	}
}

bool PassCheck()
{
	bool flag = true;
	for(int i=0;i!=resultVec.size();i++)
	{
		for(int j=0;j!=i;j++)
		{
			if((abs(resultVec[i]-resultVec[j]) == i-j) || (resultVec[i] == resultVec[j]))
			{
				flag = false;
				break;
			}
		}
		if(!flag)
		{
			break;
		}
	}
	return flag;
}

void QueenPermutation(int n)
{
	resultVec.resize(n);
	for(int i=0;i!=n;i++)
	{
		resultVec[i]=i;
	}
	while(next_permutation(resultVec.begin(),resultVec.end()))
	{
		if(PassCheck())
		{
			for(int i=0;i!=resultVec.size();i++)
			{
				cout<<resultVec[i]<<" ";
			}
			break;
		}
	}
}

int main()  //主函数 想求解的皇后个数为n
{
	int n;
	cout<<"输入皇后的个数(必须为正整数):"<<endl;
	cin>>n;

	clock_t beginTime = 0;
	clock_t endTime = 0;

	beginTime = clock();
	QueenRecursive(n,0);
	endTime = clock();
	cout<<"回溯法用时:"<<endTime-beginTime<<"ms"<<endl;


	beginTime = clock();
	QueenPermutation(n);
	endTime = clock();
	cout<<"全排列法用时:"<<endTime-beginTime<<"ms"<<endl;

	return 0;
}
主要采用了两种方法求解,一种是递归,一种是全排列法。全排列法非常直观,但是效率很慢。递归的效率要比全排列法高很多,在n越大时越明显。
递归的基本思想:result数组存储的是每一列上皇后所在的位置(0~n-1),在确定了第j列的皇后位置之后,第j+1列的位置就需要根据前j列来确定,依此类推,直到所有n列的位置都确定之后就是一种解决方案,这里的递归好比n个for循环。

全排列思想:就是对每一个全排列进行检查,如果符合条件就输出。
对于n皇后问题,如果只需要找出一组解,有一种最快速的方法就就是:
一、当n%6   !=   2   或   n%6   !=   3时,有一个解为: 
  2,4,6,8,...,n,1,3,5,7,...,n-1     (n为偶数) 
  2,4,6,8,...,n-1,1,3,5,7,...,n     (n为奇数) 
二、当n%6   ==   2   或   n%6   ==   3时, 
  (当n为偶数,k=n/2;当n为奇数,k=(n-1)/2) 
  k,k+2,k+4,...,n,1,2,4,...,k-2,k+3,k+5,...,n-1,1,3,5,...,k+1         (k为偶数,n为偶数) 
  k,k+2,k+4,...,n-1,2,4,...,k-2,k+3,k+5,...,n-2,1,3,5,...,k+1,n     (k为偶数,n为奇数) 
  k,k+2,k+4,...,n-1,1,3,5,...,k-2,k+3,...,n,2,4,...,k+1                     (k为奇数,n为偶数) 
  k,k+2,k+4,...,n-2,1,3,5,...,k-2,k+3,...,n-1,2,4,...,k+1,n             (k为奇数,n为奇数)


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值