图像处理算法之Gamma校正

1 使用场景

当一张图片出现过亮或者过暗的时候导致图像对比度较差,可以使用Gamma校正来处理

2 原理

在这里插入图片描述
如上图所示,为函数 f ( I ) = I γ f(I) = I^γ f(I)=Iγ的曲线表示:
γ < 1 γ<1 γ<1时,为图中上方的虚线曲线,图中 γ = 1 / 2.2 γ=1/2.2 γ=1/2.2
γ = 1 γ=1 γ=1时,为图中间的直线,也就是 f ( I ) = I f(I)=I f(I)=I
γ > 1 γ>1 γ>1时, 为图中下方的曲线实线,图中 γ = 2.2 γ=2.2 γ=2.2

γ ! = 1 γ!=1 γ!=1时,会将对I进行非线性的变换,对0,1两端的变换最小,对中间的变换最大。如果把图像0-255像素值,归一化到0-1, 带入进来,通过该变换,则可达到一定的效果:
1)当 γ < 1 γ<1 γ<1时,图像中最亮(1)或者最暗(0)的像素保持不变,整体亮度会发生提升,像素值中间的部分效果最明显,用来处理比较暗的图片非常好
2)当 γ > 1 γ>1 γ>1时,图像中最亮(1)或者最暗(0)的像素保持不变,整体亮度会发生降低,像素值中间的部分效果最明显,用来处理比较亮的图片非常好

最后x255即可

3 实现步骤

假设图像中有一个像素,值是 200 ,那么对这个像素进行校正必须执行如下步骤:

1. 归一化 :将像素值转换为 0 ~ 1 之间的实数。 算法如下 : ( i + 0. 5)/256 这里包含 1 个除法和 1 个加法操作。对于像素 A 而言 , 其对应的归一化值为 0. 783203 。

2. 预补偿 :根据公式 , 求出像素归一化后的 数据以 1 /gamma 为指数的对应值。这一步包含一个 求指数运算。若 gamma 值为 2. 2 , 则 1 /gamma 为 0. 454545 , 对归一化后的 A 值进行预补偿的结果就 是 0. 783203 ^0. 454545 = 0. 894872 。

3. 反归一化 :将经过预补偿的实数值反变换为 0 ~ 255 之间的整数值。具体算法为 : f*256 - 0. 5 此步骤包含一个乘法和一个减法运算。续前 例 , 将 A 的预补偿结果 0. 894872 代入上式 , 得到 A 预补偿后对应的像素值为 228 , 这个 228 就是最后送 入显示器的数据。

如上所述如果直接按公式编程的话,假设图像的分辨率为 800*600 ,对它进行 gamma 校正,需要执行 48 万个浮点数乘法、除法和指数运算。效率太低,根本达不到实时的效果。

针对上述情况,提出了一种快速算法,如果能够确知图像的像素取值范围 , 例如 , 0 ~ 255 之间的整数 , 则图像中任何一个像素值只能 是 0 到 255 这 256 个整数中的某一个 ; 在 gamma 值 已知的情况下 ,0 ~ 255 之间的任一整数 , 经过“归一 化、预补偿、反归一化”操作后 , 所对应的结果是唯一的 , 并且也落在 0 ~ 255 这个范围内。

如前例 , 已知 gamma 值为 2. 2 , 像素 A 的原始值是 200 , 就可求得 经 gamma 校正后 A 对应的预补偿值为 228 。基于上述原理 , 我们只需为 0 ~ 255 之间的每个整数执行一次预补偿操作 , 将其对应的预补偿值存入一个预先建立的 gamma 校正查找表 (LUT:Look Up Table) , 就可以使用该表对任何像素值在 0 ~ 255 之 间的图像进行 gamma 校正。

4 实现

#include <iostream>
#include <opencv2/opencv.hpp>

using namespace cv;
Mat gammaTransform(Mat &srcImage, float kFactor)
{
	
	unsigned char LUT[256];
	for (int i = 0; i < 256; i++)
	{
		float f = (i + 0.5f) / 255;
		f = (float)(pow(f, kFactor));
		LUT[i] = saturate_cast<uchar>(f*255.0f - 0.5f);
	}
	Mat resultImage = srcImage.clone();
	
	if (srcImage.channels() == 1)
	{
		
		MatIterator_<uchar> iterator = resultImage.begin<uchar>();
		MatIterator_<uchar> iteratorEnd = resultImage.end<uchar>();
		for (; iterator != iteratorEnd; iterator++)
		{
			*iterator = LUT[(*iterator)];
		}
	}
	else
	{
		
		
		MatIterator_<Vec3b> iterator = resultImage.begin<Vec3b>();
		MatIterator_<Vec3b> iteratorEnd = resultImage.end<Vec3b>();
		for (; iterator != iteratorEnd; iterator++)
		{
			(*iterator)[0] = LUT[((*iterator)[0])];//b
			(*iterator)[1] = LUT[((*iterator)[1])];//g
			(*iterator)[2] = LUT[((*iterator)[2])];//r
		}
	}
	return resultImage;
}


5 效果

老胡拉来尝试一把:

γ = 1 / 2.2 γ=1/2.2 γ=1/2.2 的提亮效果
在这里插入图片描述

### Gamma校正算法的实现与理论 #### 定义与基本概念 Gamma校正图像处理中的一个重要技术,用于调整图像亮度并改善视觉效果。该方法通过改变输入图像像素强度的概率分布来增强对比度或适应不同的显示设备特性[^1]。 #### 数学模型 Gamma变换可以表示为: \[ V_{\text{out}} = A \cdot V_{\text{in}}^\gamma \] 其中 \(V_{\text{in}}\) 表示原始灰度级值;\(V_{\text{out}}\) 是经过伽玛转换后的输出灰度级别;参数 &gamma; 控制曲线形状,当&gamma;<1时会拉伸暗部区域而压缩亮区,反之则加强高光部分;系数A通常设置成使得最大可能输入映射到最大允许输出范围内的某个固定数值上[^2]。 #### Python 实现代码 下面是一个简单的Python函数用来执行Gamma矫正: ```python import numpy as np from PIL import Image def gamma_correction(image_path, output_path, gamma=1.0): img = Image.open(image_path).convert('L') # 打开图片并转为灰度模式 array_img = np.array(img) # 应用Gamma矫正公式 corrected_array = ((array_img / 255)**(1/gamma)) * 255 result_image = Image.fromarray(corrected_array.astype(np.uint8)) result_image.save(output_path) ``` 此段程序读取给定路径下的图像文件,并对其进行指定gamma值的修正后保存至新的位置。注意这里假设传入的是单通道(即黑白)图像数据,在实际应用中对于彩色图还需要分别对RGB三个分量做相同的操作[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值