import numpy as np
points = np.arange(-5, 5, 0.01) # 产生1000个建个相等的点
xs, ys = np.meshgrid(points, points) # meshgrid接受两个一维的数组,并且产生两个二维矩阵
ys
import matplotlib.pyplot as plt
z = np.sqrt(xs**2+ys**2) # 而后像浮点数那样写表达式即可
z
plt.imshow(z, cmap=plt.cm.gray);plt.colorbar()
plt.title("Image plot of $\sqrt{x^2 + y^2}$ for a grid of values")
# numpy.where 是三元表达式 x if condition else y 的矢量化版本
xarr = np.array([1.1,1.2,1.3,1.4,1.5])
yarr = np.array([2.1,2.2,2.3,2.4,2.5])
cond = np.array([True,False,True,True,False])
#根据cond中的值来选取xarr和yarr中的值,当为T的时候从xarr中取,否则从yarr中取
result = [(x if c else y )
for x ,y ,c in zip(xarr,yarr,cond) ]
result
#这一部分是纯Python就行处理的第一处理的速度是不够快的其次没有办法使用在多维数组上
result = np.where(cond,xarr,yarr)
result
#np.where中的第二和第三个参数可以不是数组可以是标量值
arr = np.random.randn(4,4)
arr
np.where(arr>0,2,-2) # 将数组中>0的数字设置为2,否则为-2
np.where(arr >0 ,2,arr)#只将正数的数值设置为2
#
利用Python数据分析:Numpy基础(五)
最新推荐文章于 2023-02-28 13:07:55 发布
这篇博客介绍了如何利用Numpy进行数据处理,包括创建网格数据、图像绘制、条件选择、统计运算以及布尔数组操作。通过实例展示了np.meshgrid、plt.imshow、np.where、数组的统计方法如mean、sum以及cumsum等函数的应用。
摘要由CSDN通过智能技术生成