题意:给定n个球和m条球与球之间的轻重关系,要求输出每个球的重量,无解则输出-1.
trick:1.有重边。
2.要求输出每个球的重量而不是从轻到重每个球的标签。
3.要求输出编号小的球尽量轻的情况,而不是字典序最小的情况。
PS:此题的要求是数越小的位置越靠前,而字典序最小是指越靠前的位置数越小。
4.正向构图+贪心会WA(这样得到的是字典序最小的情况)。
必须佩服出题者。给的sample完全看不出这几个trick。。
思路:反向建图+拓扑排序+优先队列
注意根据题的要求,要先保证1号球最轻,如果我们由轻的向重的连边,然后我们依次有小到大每次把重量分给一个入度为0的点,那么在拓扑时我们面对多个入度为0的点,我们不知道该把最轻的分给谁才能以最快的速度找到1号(使1号入度为0),并把当前最轻的分给1号。所以我们要由重的向轻的连边,然后从大到小每次把一个重量分给一个入度为0的点。这样我们就不用急于探求最小号。我们只需要一直给最大号附最大值,尽量不给小号赋值,这样自然而然就会把轻的重量留给小号。
#include <cstdio>
#include <algorithm>
#include<cstring>
#include<iostream>
#include<cstdlib>
#include<vector>
#include<queue>
using namespace std;
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
int n,m;
scanf("%d%d",&n,&m);
vector<int> g[205];
int in[205]= {0};
for(int i=1; i<=m; ++i)
{
int u,v;
scanf("%d%d",&v,&u);
if(g[u].end()==find(g[u].begin(),g[u].end(),v))
{
in[v]++;
g[u].push_back(v);
}
}
priority_queue< int > q;
int ans[205]= {0},pos=0;
for(int i=1; i<=n; ++i)
if(in[i]==0) q.push(i);
while(!q.empty())
{
int gettop=q.top();
q.pop();
ans[pos++]=gettop;
for(int i=0; i<g[gettop].size(); ++i)
{
in[g[gettop][i]]--;
if(in[g[gettop][i]]==0)
q.push(g[gettop][i]);
}
}
if(pos==n)
{
bool fir=false;
for(int i=1; i<=n; ++i)
{
for(int j=0; j<n; ++j)
if(i==ans[j])
{
if(!fir)
{
printf("%d",n-j);
fir=true;
}
else printf(" %d",n-j);
}
}
}
else
printf("-1");
printf("\n");
}
return 0;
}