数据流的第K大数值

该博客介绍了如何使用最小堆来解决LeetCode上的剑指OfferII059问题,即在数据流中实时维护第K大数值。文章详细讲解了KthLargest类的实现,包括初始化最小堆、填充、添加元素以及核心的下沉操作等关键函数,展示了如何通过最小堆高效地处理数据流中的K大数问题。
摘要由CSDN通过智能技术生成

剑指 Offer II 059. 数据流的第 K 大数值 - 力扣(LeetCode) (leetcode-cn.com)

#define MIN 0x80000000
class KthLargest {
    int* minHeap;
    int K;
public:
    KthLargest(int k, vector<int>& nums) {
        K = k;
        minHeap = new int[k + 1];
        int size = nums.size();
        int ini_scale = min(size, k);
        for (int i = 1; i <= ini_scale; ++i) minHeap[i] = nums[i - 1];
        size <= k ? fill(size + 1, k + 1) : add(nums, k, size);
    }

    int fill(int begin, int end) {
        for (int i = begin; i != end; ++i) minHeap[i] = MIN;
        return effervesce();
    }

    int add(vector<int>& nums, int begin, int end) {
        effervesce();
        for (int i = begin; i != end; ++i) add(nums[i]);
        return 0;
    }

    int add(int val) {
        return val < minHeap[1] ? minHeap[1] : sink(val, 1);
    }

    int effervesce() {
        for (int pos = K / 2; pos; --pos) sink(minHeap[pos], pos);
        return 0;
    }
    //核心代码
    int sink(int pebble, int pos) {
        int bubble;
        while ((bubble = pos * 2) <= K) {
            bubble != K && minHeap[bubble + 1] < minHeap[bubble] ? ++bubble : 0;
            if (pebble <= minHeap[bubble]) break;
            minHeap[pos] = minHeap[bubble];
            pos = bubble;
        }
        minHeap[pos] = pebble;
        return minHeap[1];
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值