Matlab:五点中心差分法求解狄利克雷(Dirichlet)边界的泊松(Poisson)问题,边界值为任意值

本文介绍了二维泊松方程的有限差分法在MATLAB中的实现,通过给定边界条件和精确解,展示了如何使用矩阵方法求解,并对比了数值解与解析解的绝对误差。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考l链接:

  1. 有限差分法简介
  2. 有限差分法-二维泊松方程及其Matlab程序实现
  3. 弹性力学方程 有限差分法matlab,泊松方程的有限差分法的MATLAB实现
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%          Matrix method for Poisson Equation         %%%%
%%%   -[u_{xx}+u_{yy}]=f(x,y), xl < x < xr, yb < y < yt  %%%%
%%%         u(x,y) = gl(xl,y) on left boundary,          %%%%  
%%%         u(x,y) = gr(xr,y) on left boundary,          %%%%  
%%%         u(x,y) = gb(x,yb) on left boundary,          %%%%  
%%%         u(x,y) = gt(x,yt) on left boundary,          %%%%  
%%%   Exact soln: u(x,y) = exp(pi*x)*sin(pi*y)           %%%%
%%%         Here f(x,y) = (pi^2-1)*exp(x)*sin(pi*y);     %%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear all; 
clc;
close all;

fside = @(x, y) (pi^2-1)*exp(x).*sin(pi*y);
utrue = @(x, y) exp(x).*sin(pi*y);
uleft = @(x, y) exp(x).*sin(pi*y);
uright = @(x, y) exp(x).*sin(pi*y);
ubottom = @(x, y) exp(x).*
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值